NORM PRESERVING EXTENSIONS OF BOUNDED HOLOMORPHIC FUNCTIONS

被引:7
|
作者
Kosinski, Lukasz [1 ]
Mccarthy, John E. [2 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
基金
美国国家科学基金会;
关键词
POLYDISK;
D O I
10.1090/tran/7597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A relatively polynomially convex subset V of a domain Omega has the extension property if for every polynomial p there is a bounded holomorphic function phi on Omega that agrees with p on V and whose H-infinity norm on Omega equals the sup-norm of p on V. We show that if Q is either strictly convex or strongly linearly convex in C-2, or the ball in any dimension, then the only sets that have the extension property are retracts. If Omega is strongly linearly convex in any dimension and V has the extension property, we show that V is a totally geodesic submanifold. We show how the extension property is related to spectral sets.
引用
收藏
页码:7243 / 7257
页数:15
相关论文
共 50 条
  • [41] Holomorphic extensions and theta functions on complex tori
    Dwilewicz, Roman J.
    MONATSHEFTE FUR MATHEMATIK, 2013, 169 (02): : 145 - 160
  • [42] Holomorphic extensions of representations:: (I) automorphic functions
    Krötz, B
    Stanton, RJ
    ANNALS OF MATHEMATICS, 2004, 159 (02) : 641 - 724
  • [43] Holomorphic extensions and theta functions on complex tori
    Roman J. Dwilewicz
    Monatshefte für Mathematik, 2013, 169 : 145 - 160
  • [45] A CHARACTERIZATION OF HOLOMORPHIC BIVARIATE FUNCTIONS OF BOUNDED INDEX
    Patterson, Richard F.
    Nuray, Fatih
    MATHEMATICA SLOVACA, 2017, 67 (03) : 731 - 736
  • [46] INITIAL COEFFICIENTS OF BOUNDED HOLOMORPHIC UNIVALENT FUNCTIONS
    ALEKSANDROV, IO
    KRYUCHKO.BY
    POPOV, VI
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1973, (01): : 3 - 5
  • [47] CLUSTER VALUES OF HOLOMORPHIC FUNCTIONS OF BOUNDED TYPE
    Aron, Richard M.
    Carando, Daniel
    Lassalle, Silvia
    Maestre, Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (04) : 2355 - 2369
  • [48] Algebras generated by two bounded holomorphic functions
    Stessin, MI
    Thomas, PJ
    JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 89 - 114
  • [50] LOCALLY BOUNDED SUBSETS OF HOLOMORPHIC-FUNCTIONS
    BOYD, C
    DINEEN, S
    COMPUTATIONAL & APPLIED MATHEMATICS, 1994, 13 (03): : 189 - 194