NORM PRESERVING EXTENSIONS OF BOUNDED HOLOMORPHIC FUNCTIONS
被引:7
|
作者:
Kosinski, Lukasz
论文数: 0引用数: 0
h-index: 0
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
Kosinski, Lukasz
[1
]
Mccarthy, John E.
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Math & Stat, St Louis, MO 63130 USAJagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
Mccarthy, John E.
[2
]
机构:
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
[2] Washington Univ, Dept Math & Stat, St Louis, MO 63130 USA
A relatively polynomially convex subset V of a domain Omega has the extension property if for every polynomial p there is a bounded holomorphic function phi on Omega that agrees with p on V and whose H-infinity norm on Omega equals the sup-norm of p on V. We show that if Q is either strictly convex or strongly linearly convex in C-2, or the ball in any dimension, then the only sets that have the extension property are retracts. If Omega is strongly linearly convex in any dimension and V has the extension property, we show that V is a totally geodesic submanifold. We show how the extension property is related to spectral sets.
机构:
Jagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, PolandJagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland
Kosinski, Lukasz
McCarthy, John
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Dept Math & Stat, St Louis, MO 63130 USAJagiellonian Univ, Fac Math & Comp Sci, Inst Math, Lojasiewicza 6, PL-30348 Krakow, Poland