Riemann-Hilbert approach for the Camassa-Holm equation on the line

被引:72
|
作者
de Monvel, Anne Boutet
Shepelsky, Dmitry
机构
[1] Univ Paris 07, Inst Math Jussieu, F-75251 Paris 05, France
[2] Inst Low Temp Phys, UA-61103 Kharkov, Ukraine
关键词
D O I
10.1016/j.crma.2006.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a Riemann-Hilbert problem formalism for the initial value problem for the Camassa-Holm equation u(t) - u(txx) + 2 omega u(x) + 3uu(x) = 2u(x)u(xx) + uu(xxx) on the line (CH). We show that: (i) for all omega > 0, the solution of this problem can be obtained in a parametric form via the solution of some associated Riemann-Hilbert problem; (ii) for large time, it develops into a train of smooth solitons; (iii) for small omega, this soliton train is close to a train of peakons, which are piecewise smooth solutions of the CH equation for omega = 0.
引用
收藏
页码:627 / 632
页数:6
相关论文
共 50 条
  • [41] Multisymplectic method for the Camassa-Holm equation
    Yu Zhang
    Zi-Chen Deng
    Wei-Peng Hu
    Advances in Difference Equations, 2016
  • [42] On the isospectral problem of the Camassa-Holm equation
    Dou, Yaru
    Han, Jieyu
    Meng, Gang
    ARCHIV DER MATHEMATIK, 2023, 121 (01) : 67 - 76
  • [43] On a dissipative form of Camassa-Holm equation
    Yu, Shengqi
    Wang, Mingxin
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (09)
  • [44] Attractors for the viscous Camassa-Holm equation
    Stanislavova, Milena
    Stefanov, Atanas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 18 (01) : 159 - 186
  • [45] A generalized super Camassa-Holm equation
    Li, Nianhua
    Tian, Kai
    JOURNAL OF GEOMETRY AND PHYSICS, 2024, 199
  • [46] An asymptotic property of the Camassa-Holm equation
    Jia, Jia
    Kang, Shun-Guang
    Tang, Tai-Man
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 97 : 55 - 64
  • [47] An Integrable Matrix Camassa-Holm Equation
    Chan, Li-Feng
    Xia, Bao-Qiang
    Zhou, Ru-Guang
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2019, 71 (12) : 1399 - 1404
  • [48] A Note on the Generalized Camassa-Holm Equation
    Wu, Yun
    Zhao, Ping
    JOURNAL OF FUNCTION SPACES, 2014, 2014
  • [49] Minimization of eigenvalues for the Camassa-Holm equation
    Feng, Hao
    Meng, Gang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (04)
  • [50] Decomposition method for the Camassa-Holm equation
    Kamdem, J. Sadefo
    Qiao, Zhijun
    CHAOS SOLITONS & FRACTALS, 2007, 31 (02) : 437 - 447