Big-Data-Generated Traffic Flow Prediction Using Deep Learning and Dempster-Shafer Theory

被引:0
|
作者
Soua, Ridha [1 ]
Koesdwiady, Arief [1 ]
Karray, Fakhri [1 ]
机构
[1] Univ Waterloo, Dept Elect & Comp Engn, CPAMI, Waterloo, ON N2L 3G1, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses short-term traffic flow prediction by proposing a big-data-based framework. The proposed framework uses data fusion to deal with heterogeneous data generated from various sources. The data are categorized into two types: streams of data and event-based data. In this work, Deep Belief Networks (DBNs) are used to independently predict traffic flow using streams of data, i.e., historical traffic flow and weather data, and event-based data, i.e., tweets. Furthermore, Dempster's conditional rule for updating belief is used to fuse evidence coming from streams of data and event-based data modules to achieve enhanced prediction. The experimental results using real-world data show the merit of the proposed framework compared to the state-of- the-art ones.
引用
收藏
页码:3195 / 3202
页数:8
相关论文
共 50 条
  • [21] Health Outcome Prediction with Multiple Models and Dempster-Shafer Theory
    Bauer, Michael
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2015, : 781 - 786
  • [22] Using the Dempster-Shafer Theory of Evidence to Rank Documents
    Jiuling Zhang**
    Tsinghua Science and Technology, 2012, 17 (03) : 241 - 247
  • [23] Unsupervised author disambiguation using Dempster-Shafer theory
    Wu, Hao
    Li, Bo
    Pei, Yijian
    He, Jun
    SCIENTOMETRICS, 2014, 101 (03) : 1955 - 1972
  • [24] Multisource classification using ICM and Dempster-Shafer theory
    Foucher, S
    Germain, M
    Boucher, JM
    Bénié, GB
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2002, 51 (02) : 277 - 281
  • [25] OUTCOME PREDICTION IN TUMOUR THERAPY BASED ON DEMPSTER-SHAFER THEORY
    Lian, Chunfeng
    Ruan, Su
    Denoeux, Thierry
    Vera, Pierre
    2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015, : 63 - 66
  • [26] A Framework for Identity: Dempster-Shafer Theory the Flow and Combination of Evidence
    Mason, Janelle
    Kyei, Kofi
    Foster, Hannah
    Esterline, Albert
    2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1700 - 1706
  • [27] Shape from silhouette using Dempster-Shafer theory
    Diaz-Mas, L.
    Munoz-Salinas, R.
    Madrid-Cuevas, F. J.
    Medina-Carnicer, R.
    PATTERN RECOGNITION, 2010, 43 (06) : 2119 - 2131
  • [28] Using Dempster-Shafer theory to model earthquake events
    Mokarram, Marzieh
    Pourghasemi, Hamid Reza
    Tiefenbacher, John P.
    NATURAL HAZARDS, 2020, 103 (02) : 1943 - 1959
  • [29] Using Dempster-Shafer Theory of Evidence for Situation Inference
    McKeever, Susan
    Ye, Juan
    Coyle, Lorcan
    Dobson, Simon
    SMART SENSING AND CONTEXT, PROCEEDINGS, 2009, 5741 : 149 - +
  • [30] Using the Dempster-Shafer theory of evidence to rank documents
    Zhang, Jiuling
    Deng, Beixing
    Li, Xing
    Tsinghua Science and Technology, 2012, 17 (03) : 241 - 247