Research on semi-supervised learning for hyperspectral remote sensing imaging classification base on confidence entropy

被引:0
|
作者
Wang, Chunyang [1 ,2 ]
Xu, Zhifang [2 ]
Wang, Shuangting [2 ]
Zhang, Hebing [2 ]
Chen, Zhichao [2 ]
机构
[1] Henan Polytech Univ, Natl Adm Surveying Mapping & Geoinformat, Key Lab Mine Spatial Informat Technol, Jiaozuo 454003, Peoples R China
[2] Henan Polytech Univ, Sch Surveying & Land Informat Engn, Jiaozuo 454003, Peoples R China
关键词
hyperspectral image; image classification; semi-supervised learning; posterior probability; confidence entropy; S EVIDENCE THEORY; 3; DECADES; FUSION;
D O I
10.1109/ICPADS.2016.163
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The research of Hyperspectral classification is the hotpots at present. In this article, an effective semi-supervised classification method was proposed for hyperspectral image based on confidence entropy. The experimental results show that the proposed method can effectively improve the accuracy of classification and obtain better classification results for hyperspectral image data using few labeled samples.
引用
收藏
页码:1225 / 1228
页数:4
相关论文
共 50 条
  • [21] Unified active and semi-supervised learning for hyperspectral image classification
    Wang, Zengmao
    Du, Bo
    GEOINFORMATICA, 2023, 27 (01) : 23 - 38
  • [22] SEMI-SUPERVISED LEARNING BY DOMAIN ADAPTATION FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Deshpande, Shailesh S.
    Banolia, Chaman
    Balamuralidhar, P.
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6009 - 6012
  • [23] Extended Semi-Supervised Learning GAN for Hyperspectral Imagery Classification
    Hahn, Andrew
    Tummala, Murali
    Scrofani, James
    2019 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2019,
  • [24] Combination of Sparse and Semi-Supervised Learning for Classification of Hyperspectral Images
    Aydemir, M. Said
    Bilgin, Gokhan
    2015 23RD SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2015, : 592 - 595
  • [25] SEMI-SUPERVISED ACTIVE LEARNING FOR URBAN HYPERSPECTRAL IMAGE CLASSIFICATION
    Dopido, Inmaculada
    Li, Jun
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 1586 - 1589
  • [26] Unified active and semi-supervised learning for hyperspectral image classification
    Zengmao Wang
    Bo Du
    GeoInformatica, 2023, 27 : 23 - 38
  • [27] SEMI-SUPERVISED REMOTE SENSING CLASSIFICATION VIA ASSOCIATIVE TRANSFER
    Li, Youyou
    Long, Teng
    He, BinBin
    Zhang, Xiaodong
    Liu, XiaoFang
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 2475 - 2478
  • [28] SEMI-SUPERVISED REMOTE SENSING IMAGE CLASSIFICATION METHODS ASSESSMENT
    Negri, Rogerio Galante
    Siqueia Sant'Anna, Sidnei Joao
    Dutra, Luciano Vieira
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2939 - 2942
  • [29] Semi-supervised bundle manifold learning for hyperspectral image classification
    Li, Zhi-Min
    Zhang, Jie
    Huang, Hong
    Jiang, Tao
    Guangxue Jingmi Gongcheng/Optics and Precision Engineering, 2015, 23 (05): : 1434 - 1442
  • [30] A novel semi-supervised learning framework for hyperspectral image classification
    Ye, Zhijing
    Li, Hong
    Song, Yalong
    Wang, Jianzhong
    Benediktsson, Jon Atli
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2016, 14 (02)