Structural model analysis of multiple quantitative traits

被引:138
|
作者
Li, Renhua
Tsaih, Shirng-Wern
Shockley, Keith
Stylianou, Ioannis M.
Wergedal, Jon
Paigen, Beverly
Churchill, Gary A.
机构
[1] Jackson Lab, Bar Harbor, ME 04609 USA
[2] Loma Linda Univ, JL Pettis Mem VA Med Ctr, Musculoskeletal Dis Ctr, Loma Linda, CA 92350 USA
[3] Loma Linda Univ, Dept Med, Loma Linda, CA 92350 USA
[4] Loma Linda Univ, Dept Biochem, Loma Linda, CA 92350 USA
来源
PLOS GENETICS | 2006年 / 2卷 / 07期
关键词
D O I
10.1371/journal.pgen.0020114
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
We introduce a method for the analysis of multilocus, multitrait genetic data that provides an intuitive and precise characterization of genetic architecture. We show that it is possible to infer the magnitude and direction of causal relationships among multiple correlated phenotypes and illustrate the technique using body composition and bone density data from mouse intercross populations. Using these techniques we are able to distinguish genetic loci that affect adiposity from those that affect overall body size and thus reveal a shortcoming of standardized measures such as body mass index that are widely used in obesity research. The identification of causal networks sheds light on the nature of genetic heterogeneity and pleiotropy in complex genetic systems.
引用
收藏
页码:1046 / 1057
页数:12
相关论文
共 50 条