On Laplacian eigenvalues of a graph

被引:16
|
作者
Zhou, B [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Laplacian eigenvalue; line graph; bipartite graph;
D O I
10.1515/zna-2004-0310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Let G be a connected graph with n vertices and in edges. The Laplacian eigenvalues are denoted by mu(1) (G) greater than or equal to mu(2) (G) greater than or equal to(...)greater than or equal to mu(n-1) (G) > mu(n) (G) = 0. The Laplacian eigenvalues have important applications in theoretical chemistry. We present upper bounds for mu(1) (G) + (...) + mu(k) (G) and lower bounds for mu(n-1) (G) + (...) + mu(n-k) (G) in terms of n and m, where 1 less than or equal to k less than or equal to n-2, and characterize the extremal cases. We also discuss a type of upper bounds for mu(1) (G) in terms of degree and 2-degree.
引用
收藏
页码:181 / 184
页数:4
相关论文
共 50 条
  • [21] Lower bounds of the Laplacian graph eigenvalues
    Torgasev, A
    Petrovic, M
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2004, 15 (04): : 589 - 593
  • [22] Graph toughness from Laplacian eigenvalues
    Gu, Xiaofeng
    Haemers, Willem H.
    ALGEBRAIC COMBINATORICS, 2022, 5 (01):
  • [23] On the approximation of Laplacian eigenvalues in graph disaggregation
    Hu, Xiaozhe
    Urschel, John C.
    Zikatanov, Ludmil T.
    LINEAR & MULTILINEAR ALGEBRA, 2017, 65 (09): : 1805 - 1822
  • [24] On the sum of signless Laplacian eigenvalues of a graph
    Ashraf, F.
    Omidi, G. R.
    Tayfeh-Rezaie, B.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (11) : 4539 - 4546
  • [25] On the sum of Laplacian eigenvalues of a signed graph
    Wang, Dijian
    Hou, Yaoping
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 : 39 - 52
  • [26] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng LI Yong Liang PAN Department of Mathematics
    Acta Mathematica Sinica(English Series), 2004, 20 (05) : 803 - 806
  • [27] ON THE MAIN SIGNLESS LAPLACIAN EIGENVALUES OF A GRAPH
    Deng, Hanyuan
    Huang, He
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2013, 26 : 381 - 393
  • [28] On upper bounds for Laplacian graph eigenvalues
    Zhu, Dongmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2764 - 2772
  • [29] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    Acta Mathematica Sinica, 2004, 20 : 803 - 806
  • [30] A New Upper Bound for Laplacian Graph Eigenvalues
    Hu, Shengbiao
    INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE, 2008, 1060 : 298 - 301