Line Integrals of Intuitionistic Fuzzy Calculus and Their Properties

被引:15
|
作者
Ai, Zhenghai [1 ]
Xu, Zeshui [2 ]
机构
[1] Leshan Normal Univ, Dept Math & Informat Sci, Leshan 614000, Peoples R China
[2] Sichuan Univ, Business Sch, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Atanassov's intuitionistic fuzzy set (A-IFS); intuitionistic fuzzy calculus (IFC); intuitionistic fuzzy line integrals (IFLIs); relationships; AGGREGATION OPERATORS; SETS; INFORMATION; OPERATIONS; NUMBERS;
D O I
10.1109/TFUZZ.2017.2724502
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atanassov's intuitionistic fuzzy set (A-IFS) is a powerful tool to handle uncertainty and vagueness in real life. The basic elements of an A-IFS are intuitionistic fuzzy values, based on which the intuitionistic fuzzy calculus (IFC) has been proposed recently. However, to date, there is no investigation for intuitionistic fuzzy line integrals (FLIs), which are very important for further developing IFC. In this paper, we propose the IFLIs and give their concrete values. After that, we investigate a series of basic properties of the IFLIs in detail, moreover, in order to show the utility of the proposed IFLIs, we offer an example, and finally, we discuss the relationships among the additive IFLI, the multiplicative IFLI, and the intuitionistic fuzzy aggregation operators.
引用
收藏
页码:1435 / 1446
页数:12
相关论文
共 50 条
  • [31] An intuitionistic λ-calculus with exceptions
    David, R
    Mounier, G
    JOURNAL OF FUNCTIONAL PROGRAMMING, 2005, 15 : 33 - 52
  • [32] Intuitionistic refinement calculus
    Boulme, Sylvain
    Typed Lambda Calculi and Applications, Proceedings, 2007, 4583 : 54 - 69
  • [33] INTUITIONISTIC FUZZY BI-IMPLICATOR AND PROPERTIES OF LUKASIEWICZ INTUITIONISTIC FUZZY BI-IMPLICATOR
    Ashraf, S.
    Qayyum, M.
    Kerre, E. E.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (02): : 315 - 326
  • [34] A Unification of Intuitionistic Fuzzy Calculus Theories Based on Subtraction Derivatives and Division Derivatives
    Lei, Qian
    Xu, Zeshui
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (05) : 1023 - 1040
  • [35] Simplified interval-valued intuitionistic fuzzy integrals and their use in park siting
    Peijia Ren
    Zeshui Xu
    Hua Zhao
    Jiuping Xu
    Soft Computing, 2016, 20 : 4377 - 4393
  • [36] Definite integrals for aggregating continuous interval-valued intuitionistic fuzzy information
    Wen, Miaomiao
    Zhao, Hua
    Xu, Zeshui
    Lei, Qian
    APPLIED SOFT COMPUTING, 2018, 70 : 875 - 895
  • [37] Choquet integrals of weighted generalized and group generalized intuitionistic fuzzy soft sets
    Sheng Li
    Xiao-qi Peng
    Yu-xiao Li
    Soft Computing, 2020, 24 : 745 - 760
  • [38] Simplified interval-valued intuitionistic fuzzy integrals and their use in park siting
    Ren, Peijia
    Xu, Zeshui
    Zhao, Hua
    Xu, Jiuping
    SOFT COMPUTING, 2016, 20 (11) : 4377 - 4393
  • [39] Choquet integrals of weighted generalized and group generalized intuitionistic fuzzy soft sets
    Li, Sheng
    Peng, Xiao-qi
    Li, Yu-xiao
    SOFT COMPUTING, 2020, 24 (02) : 745 - 760
  • [40] SUB-LOGICAL PROPERTIES OF CLASSICAL AND INTUITIONISTIC PROPOSITIONAL CALCULUS
    SEMENENK.MI
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1970, 16 (03): : 201 - &