A comparative study on supervised and unsupervised learning approaches for multilingual text categorization

被引:0
|
作者
Lee, Chung-Hong [1 ]
Yang, Hsin-Chang [2 ]
Chen, Ting-Chung [1 ]
Ma, Sheng-Min [1 ]
机构
[1] Natl Kaohsiung Univ Appl Sci, Dept Elect Engn, Kaohsiung, Taiwan
[2] Chang Jung Univ, Dept Informat Management, Tainan, Taiwan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recently users of internationally distributed information networks need tools and methods that will enable them to discover, retrieve and categorize relevant information, in whatever language and form it may have been stored. This drives a convergence of numerous interests from diverse research communities focusing on the issues related to multilingual text categorization. In this work we compare and evaluate the performance of the leading supervised and unsupervised approaches for multilingual text categorization by using various performance measures and standard document corpora. For simplicity, we selected Support Vector Machines (SVM) and Latent Semantic Indexing (LSI) techniques as representatives of supervised and unsupervised methods for multilingual text categorization, respectively. The preliminary results show that our platform models including both supervised and unsupervised learning methods have the potentials for multilingual text categorization.
引用
收藏
页码:511 / +
页数:2
相关论文
共 50 条
  • [21] Framing climate change in Nature and Science editorials: applications of supervised and unsupervised text categorization
    Stede, Manfred
    Bracke, Yannic
    Borec, Luka
    Kinkel, Neele Charlotte
    Skeppstedt, Maria
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2023, 6 (02): : 485 - 513
  • [22] Arabic Text Categorization using Machine Learning Approaches
    Alshammari, Riyad
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2018, 9 (03) : 226 - 230
  • [23] Framing climate change in Nature and Science editorials: applications of supervised and unsupervised text categorization
    Manfred Stede
    Yannic Bracke
    Luka Borec
    Neele Charlotte Kinkel
    Maria Skeppstedt
    Journal of Computational Social Science, 2023, 6 : 485 - 513
  • [24] A comparative study on text representation schemes in text categorization
    Song, FX
    Liu, SH
    Yang, JY
    PATTERN ANALYSIS AND APPLICATIONS, 2005, 8 (1-2) : 199 - 209
  • [25] DWDM reconstruction using supervised and unsupervised learning approaches
    Venkatesan, K.
    Chandrasekar, A.
    Ramesh, P. G., V
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2021, 15 (9-10): : 459 - 470
  • [26] A comparative study on text representation schemes in text categorization
    Fengxi Song
    Shuhai Liu
    Jingyu Yang
    Pattern Analysis and Applications, 2005, 8 : 199 - 209
  • [27] Supervised an unsupervised learning approaches for the labeling of multivariate images
    Bertrand, D
    Novales, B
    Chtioui, Y
    PRECISION AGRICULTURE AND BIOLOGICAL QUALITY, 1999, 3543 : 44 - 52
  • [28] Unsupervised and Supervised Learning Approaches Together for Microarray Analysis
    Saha, Indrajit
    Maulik, Ujjwal
    Bandyopadhyay, Sanghamitra
    Plewczynski, Dariusz
    FUNDAMENTA INFORMATICAE, 2011, 106 (01) : 45 - 73
  • [29] Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience
    Azari, Bahar
    Westlin, Christiana
    Satpute, Ajay B.
    Hutchinson, J. Benjamin
    Kragel, Philip A.
    Hoemann, Katie
    Khan, Zulqarnain
    Wormwood, Jolie B.
    Quigley, Karen S.
    Erdogmus, Deniz
    Dy, Jennifer
    Brooks, Dana H.
    Barrett, Lisa Feldman
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [30] Comparing supervised and unsupervised approaches to emotion categorization in the human brain, body, and subjective experience
    Bahar Azari
    Christiana Westlin
    Ajay B. Satpute
    J. Benjamin Hutchinson
    Philip A. Kragel
    Katie Hoemann
    Zulqarnain Khan
    Jolie B. Wormwood
    Karen S. Quigley
    Deniz Erdogmus
    Jennifer Dy
    Dana H. Brooks
    Lisa Feldman Barrett
    Scientific Reports, 10