Experimental study of heat transfer characteristic on jet impingement cooling with film extraction flow

被引:29
|
作者
Wang, Kai [1 ,2 ]
Li, Haiwang [1 ]
Zhu, Jianqin [1 ]
机构
[1] Beihang Univ, Sch Jet Prop, Natl Key Lab Sci & Technol Aeroengines, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Engn Thermophys, Key Lab Adv Energy & Power Chinese Acad Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
Turbine cooling; Impingement distance; Jet position; Heat transfer; SPENT FLUID REMOVAL; IMPINGING JETS; TARGET SURFACE; LEADING-EDGE; VENT HOLES; ARRAYS; AIR; PLATE; GAS;
D O I
10.1016/j.applthermaleng.2014.05.077
中图分类号
O414.1 [热力学];
学科分类号
摘要
An experimental investigation was carried out to examine the heat transfer characteristics on impingement cooling with extraction flow under stationary condition. The local heat transfer coefficient was measured by the transient method using TLC. Special techniques and devices were developed to make this method feasible and to produce reliable experimental data. The Reynolds number based on the inlet velocity of the jet air and the diameter of impingement hole changes from 2000 to 12,000. Various test models with relative impingement distance H/d = 1.0, 3.0, 6.0 and position of impingement cooling hole = 1/3,1/2 were conducted to get the effects of H/d and f/l. The local Nu on the target surface was measured by a transient method with TLC. Experimental results reveal that the position of impingement cooling hole f/l has great influence on the heat transfer characteristics of the target surface. The averaged Nu of f/l = 1/3 configuration is about 9% higher than that of f/l = 1/2 configuration. It is also found that the maximum local Nu is mostly affected by H/d. And the higher Nusselt number is achieved with smaller H/d, the averaged Nu of H/d = 6 model is about 22%-38% lower than that of H/d = 1 for different Reynolds numbers. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:620 / 629
页数:10
相关论文
共 50 条
  • [31] Experimental and Numerical Heat Transfer Study of Swirling Air Jet Impingement
    Gudi, Abhay
    Hindasageri, Vijaykumar
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2022, 40 (04) : 1001 - 1012
  • [32] Numerical study of the flow and heat transfer in a turbulent bubbly jet impingement
    Pakhomov, M. A.
    Terekhov, V. I.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 92 : 689 - 699
  • [33] Heat transfer characteristic of the asymmetrical impingement cooling on the guide shield
    Shi, Qingqing
    Zhang, Li
    Liu, Cunliang
    Xu, Ling
    Li, Ji
    Wang, Bo
    APPLIED THERMAL ENGINEERING, 2024, 257
  • [34] Experimental study on fouling characteristics of jet impingement on heat transfer surface
    Chen, Y. (chenyongchang@bjut.edu.cn), 1600, Chinese Society for Electrical Engineering (32):
  • [35] HEAT TRANSFER AND CROSSFLOW INVESTIGATIONS FOR JET IMPINGEMENT COOLING APPLICATIONS
    Salem A.R.
    Soliman I.
    Amano R.S.
    International Journal of Gas Turbine, Propulsion and Power Systems, 2024, 15 (01): : 15 - 23
  • [37] HEAT TRANSFER BY A ROTATING LIQUID JET IMPINGEMENT COOLING SYSTEM
    Lu, Qi
    Parameswaran, Siva
    Ren, Beibei
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 8B, 2019,
  • [38] Numerical Study of Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling
    Zhang Jingzhou
    Xie Hao
    Yang Chengfeng
    CHINESE JOURNAL OF AERONAUTICS, 2009, 22 (04) : 343 - 348
  • [39] Numerical Study of Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling
    Zhang JingzhouaXie HaoabYang Chengfenga aCollege of Energy and Power Engineering Nanjing University of Aeronautics and Astronautics Nanjing China bCollege of Power Engineering Nanjing Normal University Nanjing China
    Chinese Journal of Aeronautics, 2009, 22 (04) : 343 - 348
  • [40] STUDY ON FLOW AND HEAT TRANSFER PERFORMANCE OF SINGLE JET IMPINGEMENT COOLING THROUGH VARIABLE-DIAMETER HOLE
    Xi, Lei
    Ruan, Qicheng
    Gao, Yuan
    Gao, Jianmin
    Xu, Liang
    Li, Yunlong
    THERMAL SCIENCE, 2024, 28 (6A): : 4499 - 4517