The intelligent fault diagnosis for composite systems based on machine learning

被引:0
|
作者
Wu, Li-Hua [1 ]
Jiang, Yun-Fei [1 ]
Huang, Wei [1 ]
Chen, Ai-Xiang [1 ]
Zhang, Xue-Nong [1 ]
机构
[1] Zhongshan Univ, Software Inst, Guangzhou 510275, Peoples R China
关键词
RBD; MBD; composite system; knowledge base; machine learning;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, electronic devices are getting more complex, which make it also more difficult to use a single reasoning technique to meet the demands of the fault diagnosis. Integrating two or more reasoning techniques becomes a trend in developing intelligent diagnosis. In this paper we discuss the intelligent diagnosis problems and propose a diagnosis architecture for composite systems, which combines rule-based diagnosis and model-based diagnosis. These two diagnosis programs not only work efficiently with machine learning in different stages of the fault diagnosis process, but also efficiently improve the process by making the best use of their individual advantages.
引用
收藏
页码:571 / +
页数:2
相关论文
共 50 条
  • [21] Advance and prospect of machine learning based fault detection and diagnosis in air conditioning systems
    Guo, Yabin
    Liu, Yaxin
    Wang, Yuhua
    Wang, Zhanwei
    Zhang, Zheng
    Xue, Puning
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 205
  • [22] Research on the machine learning method in fault diagnosis expert systems
    Wang, DP
    Feng, ZS
    Dong, YY
    ISTM/99: 3RD INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, 1999, : 371 - 375
  • [23] Deep Learning Based Intelligent Industrial Fault Diagnosis Model
    Surendran, R.
    Khalaf, Osamah Ibrahim
    Romero, Carlos Andres Tavera
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 6323 - 6338
  • [24] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [25] Federated learning for intelligent fault diagnosis based on similarity collaboration
    Zhang, Yonghong
    Xue, Xingan
    Zhao, Xiaoping
    Wang, Lihua
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (04)
  • [26] Learning mechanisms for intelligent fault diagnosis
    Gabbar, Hossam A.
    Datu, Rizal
    Fushimi, Hideyuki
    Kamel, Mohamed
    Abdursul, Rixat
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 1337 - +
  • [27] Research on Intelligent Fault Diagnosis System Based On Numerical Turning Machine
    Zhang, Tao
    Wang, Qiuhong
    Han, Jiang
    ADVANCED MECHANICAL ENGINEERING II, 2012, 192 : 397 - +
  • [28] An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine
    Yao, Lei
    Fang, Zhanpeng
    Xiao, Yanqiu
    Hou, Junjian
    Fu, Zhijun
    ENERGY, 2021, 214
  • [29] An intelligent online machine fault diagnosis system
    Fong, ACM
    Hui, SC
    COMPUTING & CONTROL ENGINEERING JOURNAL, 2001, 12 (05): : 217 - 223
  • [30] FAULT DIAGNOSIS USING INTELLIGENT KNOWLEDGE BASED SYSTEMS.
    Andow, P.K.
    Chemical Engineering Research and Design, 1985, 63 (06) : 368 - 372