Visual codebook construction for class-specific recognition

被引:2
|
作者
Gao, Jun [1 ]
Sang, Nong [1 ]
Gao, Changxin [1 ]
Tang, Qiling [1 ]
Sang, Jun [2 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Wuhan 430074, Hubei, Peoples R China
[2] Chongqing Univ, Sch Software Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
object recognition; local descriptor codebook; a priori learning; feature selection; OBJECT RECOGNITION; FEATURES; SPARSE;
D O I
10.1117/1.3160333
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Creating a visual codebook is an important problem in object recognition. Using a compact visual codebook can boost computational efficiency and reduce memory cost. A simple and effective method is proposed for visual feature codebook construction. On the basis of a feedforward hierarchical model, a robust local descriptor is proposed and an a priori statistical scheme is applied to the class-specific feature-learning stage. The experiments show that the proposed approach achieves reliable performance with shorter codebook length, and incremental learning can be easily enabled. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3160333]
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Supervised class-specific dictionary learning for sparse modeling in action recognition
    Wang, Haoran
    Yuan, Chunfeng
    Hu, Weiming
    Sun, Changyin
    PATTERN RECOGNITION, 2012, 45 (11) : 3902 - 3911
  • [22] Compression based Class-Specific Target Recognition using SAR Images
    Kakoty, Jumi Hazarika
    Mishra, Amit Kumar
    2013 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND EMBEDDED SYSTEMS (CARE-2013), 2013,
  • [23] Class-Specific Semantic Generation and Reconstruction Learning for Open Set Recognition
    Liu, Haoyang
    Lin, Yaojin
    Li, Peipei
    Hu, Jun
    Hu, Xuegang
    PROCEEDINGS OF THE THIRTY-THIRD INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2024, 2024, : 2045 - 2053
  • [24] A class-specific speech enhancement for phoneme recognition: a dictionary learning approach
    Nazreen, P. M.
    Ramakrishnan, A. G.
    Ghosh, Prasanta Kumar
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 3728 - 3732
  • [25] Unsupervised Class-Specific Deblurring
    Madam, Nimisha Thekke
    Kumar, Sunil
    Rajagopalan, A. N.
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 358 - 374
  • [26] Class-Specific Image Deblurring
    Anwar, Saeed
    Cong Phuoc Huynh
    Porikli, Fatih
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 495 - 503
  • [27] Class-specific material categorisation
    Caputo, B
    Hayman, E
    Mallikarjuna, P
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1597 - 1604
  • [28] COMPACT VISUAL CODEBOOK FOR ACTION RECOGNITION
    Wei, Qingdi
    Zhang, Xiaoqin
    Kong, Yu
    Hu, Weiming
    Ling, Haibin
    2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, : 3805 - 3808
  • [29] Adaptive face representation via class-specific and intra-class variation dictionaries for recognition
    Wenjing Li
    Jiuzhen Liang
    Multimedia Tools and Applications, 2018, 77 : 14783 - 14802
  • [30] Adaptive face representation via class-specific and intra-class variation dictionaries for recognition
    Li, Wenjing
    Liang, Jiuzhen
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (12) : 14783 - 14802