Visual codebook construction for class-specific recognition

被引:2
|
作者
Gao, Jun [1 ]
Sang, Nong [1 ]
Gao, Changxin [1 ]
Tang, Qiling [1 ]
Sang, Jun [2 ]
机构
[1] Huazhong Univ Sci & Technol, Inst Pattern Recognit & Artificial Intelligence, Wuhan 430074, Hubei, Peoples R China
[2] Chongqing Univ, Sch Software Engn, Chongqing 400044, Peoples R China
基金
中国国家自然科学基金;
关键词
object recognition; local descriptor codebook; a priori learning; feature selection; OBJECT RECOGNITION; FEATURES; SPARSE;
D O I
10.1117/1.3160333
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Creating a visual codebook is an important problem in object recognition. Using a compact visual codebook can boost computational efficiency and reduce memory cost. A simple and effective method is proposed for visual feature codebook construction. On the basis of a feedforward hierarchical model, a robust local descriptor is proposed and an a priori statistical scheme is applied to the class-specific feature-learning stage. The experiments show that the proposed approach achieves reliable performance with shorter codebook length, and incremental learning can be easily enabled. (C) 2009 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3160333]
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Class-specific codebook construction for biologically inspired recognition
    Gao, Jun
    Gao, Changxin
    Sang, Nong
    Tang, Qiling
    2009 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE, VOLS 1-3, 2009, : 565 - 568
  • [2] Optimized codebook construction method for class-specific recognition tasks
    Gao, Jun
    Sang, Nong
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36 (SUPPL. 1): : 83 - 86
  • [3] Biologically inspired class-specific codebook construction
    Gao, Jun
    Gao, Changxin
    Sang, Nong
    Tang, Qiling
    PROCEEDINGS OF THE FIRST INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND COMPUTER SCIENCE, VOL III, 2009, : 126 - 129
  • [4] CLASS-SPECIFIC CLASSIFIERS IN AUDIO-VISUAL SPEECH RECOGNITION
    Estellers, Virginia
    Baggenstoss, Paul M.
    Thiran, Jean-Philippe
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 1998 - 2002
  • [5] Class-Specific Reconstruction Transfer Learning for Visual Recognition Across Domains
    Wang, Shanshan
    Zhang, Lei
    Zuo, Wangmeng
    Zhang, Bob
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 2424 - 2438
  • [6] MINING HETEROGENEOUS CLASS-SPECIFIC CODEBOOK FOR CATEGORICAL OBJECT DETECTION AND CLASSIFICATION
    Pan, Hong
    Zhu, Yaping
    Qin, A. K.
    Xia, Liangzheng
    2013 20TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP 2013), 2013, : 3132 - 3136
  • [7] Iris recognition using class-specific dictionaries
    Naseem, Imran
    Aleem, Affan
    Togneri, Roberto
    Bennamoun, Mohammed
    COMPUTERS & ELECTRICAL ENGINEERING, 2017, 62 : 178 - 193
  • [8] Discovering Class-Specific Spatial Layouts for Scene Recognition
    Weng, Chaoqun
    Wang, Hongxing
    Yuan, Junsong
    Jiang, Xudong
    IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (08) : 1143 - 1147
  • [9] Class-Specific Semantic Reconstruction for Open Set Recognition
    Huang, Hongzhi
    Wang, Yu
    Hu, Qinghua
    Cheng, Ming-Ming
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4214 - 4228
  • [10] Learning a Class-Specific Dictionary for Facial Expression Recognition
    Zhang, Shiqing
    Zhang, Gang
    Cui, Yueli
    Zhao, Xiaoming
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2016, 16 (04) : 55 - 62