Doping mechanisms in graphene-MoS2 hybrids

被引:107
|
作者
Sachs, B. [1 ]
Britnell, L. [2 ]
Wehling, T. O. [3 ,4 ]
Eckmann, A. [2 ]
Jalil, R. [5 ]
Belle, B. D. [5 ]
Lichtenstein, A. I. [1 ]
Katsnelson, M. I. [6 ]
Novoselov, K. S. [2 ]
机构
[1] Univ Hamburg, Inst Theoret Phys 1, D-20355 Hamburg, Germany
[2] Univ Manchester, Sch Phys & Astron, Manchester M13 9PL, Lancs, England
[3] Univ Bremen, Inst Theoret Phys, D-28359 Bremen, Germany
[4] Univ Bremen, Bremen Ctr Computat Mat Sci, D-28359 Bremen, Germany
[5] Univ Manchester, Manchester Ctr Mesosci & Nanotechnol, Manchester M13 9PL, Lancs, England
[6] Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 AJ Nijmegen, Netherlands
关键词
TRANSITION;
D O I
10.1063/1.4852615
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a joint theoretical and experimental investigation of charge doping and electronic potential landscapes in hybrid structures composed of graphene and semiconducting single layer molybdenum disulfide (MoS2). From first-principles simulations, we find electron doping of graphene due to the presence of rhenium impurities in MoS2. Furthermore, we show that MoS2 edges give rise to charge reordering and a potential shift in graphene, which can be controlled through external gate voltages. The interplay of edge and impurity effects allows the use of the graphene-MoS2 hybrid as a photodetector. Spatially resolved photocurrent signals can be used to resolve potential gradients and local doping levels in the sample. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Synthesis of Graphene-MoS2 composite based anode from oxides and their electrochemical behavior
    Sarwar, Saira
    Karamat, Shumaila
    Bhatti, Arshad Saleem
    Aydinol, Mehmet Kadri
    Oral, Ahmet
    Hassan, Muhammad Umair
    CHEMICAL PHYSICS LETTERS, 2021, 781
  • [32] Single-File Protein Translocations through Graphene-MoS2 Heterostructure Nanopores
    Luan, Binquan
    Zhou, Ruhong
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (12): : 3409 - 3415
  • [33] Surface plasmon absorption in MoS2 and graphene-MoS2 micro-gratings and the impact of a liquid crystal substrate
    Reshetnyak, V. Yu.
    Zadorozhnii, V. I.
    Pinkevych, I. P.
    Bunning, T. J.
    Evans, D. R.
    AIP ADVANCES, 2018, 8 (04)
  • [34] Hydrogen Evolution Reaction Activity of Graphene-MoS2 van der Waals Heterostructures
    Biroju, Ravi K.
    Das, Deya
    Sharma, Rahul
    Pal, Shubhadeep
    Mawlong, Larionette P. L.
    Bhorkar, Kapil
    Giri, P. K.
    Singh, Abhishek K.
    Narayanan, Tharangattu N.
    ACS ENERGY LETTERS, 2017, 2 (06): : 1355 - 1361
  • [35] Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures
    Zhang, Wenjing
    Chuu, Chih-Piao
    Huang, Jing-Kai
    Chen, Chang-Hsiao
    Tsai, Meng-Lin
    Chang, Yung-Huang
    Liang, Chi-Te
    Chen, Yu-Ze
    Chueh, Yu-Lun
    He, Jr-Hau
    Chou, Mei-Yin
    Li, Lain-Jong
    SCIENTIFIC REPORTS, 2014, 4
  • [36] Sensitivity enhancement of SPR optical biosensor based on Graphene-MoS2 structure with nanocomposite layer
    Vahed, Hamid
    Nadri, Cyrus
    OPTICAL MATERIALS, 2019, 88 : 161 - 166
  • [37] Electric Field and Strain Effect on Graphene-MoS2 Hybrid Structure: Ab Initio Calculations
    Liu, Xingen
    Li, Zhongyao
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (16): : 3269 - 3275
  • [38] Graphene-MoS2 Hybrid Structure Enhanced Fiber Optic Surface Plasmon Resonance Sensor
    Wei, Wei
    Nong, Jinpeng
    Tang, Linlong
    Wang, Ning
    Chuang, Chin-Jung
    Huang, Yu
    PLASMONICS, 2017, 12 (04) : 1205 - 1212
  • [39] Spontaneous Transport of Single-Stranded DNA through Graphene-MoS2 Heterostructure Nanopores
    Luan, Binquan
    Zhou, Ruhong
    ACS NANO, 2018, 12 (04) : 3886 - 3891
  • [40] Novel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions
    Tian, He
    Tan, Zhen
    Wu, Can
    Wang, Xiaomu
    Mohammad, Mohammad Ali
    Xie, Dan
    Yang, Yi
    Wang, Jing
    Li, Lain-Jong
    Xu, Jun
    Ren, Tian-Ling
    SCIENTIFIC REPORTS, 2014, 4