Design of partially adaptive arrays using the singular-value decomposition

被引:14
|
作者
Yang, H
Ingram, MA
机构
[1] School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta
关键词
adaptive arrays;
D O I
10.1109/8.575635
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The objective of partially adaptive array design is to reduce the number of adaptive weights without significantly degrading the performance of the adaptive array, Previous work includes numerical techniques for approximately minimizing the average generalized sidelobe canceller (GSC) output power for a desired number of adaptive weights, where the average is over a range of jammer parameters, Our new ''power-space method'' also attempts to minimize the average GSC output power, but under a constraint that the reduced-dimensional solutions for all of the scenario trials lie in the same subspace, This constraint allows us to use the singular value decomposition to get the rank-reducing transformation, thereby simplifying the optimization problem, Using computer simulation, we show that our transformation yields lower output power in comparison with a previously reported example that used the numerical methods. The simplicity of the method allows large ranges of jammer parameters to be considered, Using our transformation, we consider how closely the reduced-rank solutions match the full-rank solutions and how the quality of this match relates to the output power of the partially adaptive array.
引用
收藏
页码:843 / 850
页数:8
相关论文
共 50 条
  • [1] Partially-adaptive array design using the singular value decomposition
    Yang, H
    Ingram, MA
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 2864 - 2867
  • [2] DYNAMICALLY ADAPTIVE MRI WITH ENCODING BY SINGULAR-VALUE DECOMPOSITION
    ZIENTARA, GP
    PANYCH, LP
    JOLESZ, FA
    MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (02) : 268 - 274
  • [3] Singular-value decomposition using quantum annealing
    Hashizume, Yoichiro
    Koizumi, Takashi
    Akitaya, Kento
    Nakajima, Takashi
    Okamura, Soichiro
    Suzuki, Masuo
    PHYSICAL REVIEW E, 2015, 92 (02):
  • [4] DOWNDATING THE SINGULAR-VALUE DECOMPOSITION
    GU, M
    EISENSTAT, SC
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (03) : 793 - 810
  • [5] ON MULTIPLE PATTERN EXTRACTION USING SINGULAR-VALUE DECOMPOSITION
    KANJILAL, PP
    PALIT, S
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (06) : 1536 - 1540
  • [6] SINGULAR-VALUE DECOMPOSITION AND EMBEDDING DIMENSION
    MEES, AI
    RAPP, PE
    JENNINGS, LS
    PHYSICAL REVIEW A, 1987, 36 (01): : 340 - 346
  • [7] Singular-value decomposition of a tomosynthesis system
    Burvall, Anna
    Barrett, Harrison H.
    Myers, Kyle J.
    Dainty, Christopher
    OPTICS EXPRESS, 2010, 18 (20): : 20699 - 20711
  • [8] A CAVEAT CONCERNING SINGULAR-VALUE DECOMPOSITION
    NEWMAN, M
    SARDESHMUKH, PD
    JOURNAL OF CLIMATE, 1995, 8 (02) : 352 - 360
  • [9] ON THE EARLY HISTORY OF THE SINGULAR-VALUE DECOMPOSITION
    STEWART, GW
    SIAM REVIEW, 1993, 35 (04) : 551 - 566
  • [10] COMPUTING THE GENERALIZED SINGULAR-VALUE DECOMPOSITION
    BAI, ZJ
    DEMMEL, JW
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (06): : 1464 - 1486