Fixed point property for Banach algebras associated to locally compact groups

被引:29
|
作者
Lau, Anthony To-Ming [2 ]
Mah, Peter F. [1 ]
机构
[1] Lakehead Univ, Dept Math Sci, Thunder Bay, ON P7B 5E1, Canada
[2] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Group C*-algebra; Group von Neumann algebra; Fourier algebra; Fourier-Stieltjes algebra; Weak* uniform Kadec-Klee property; Weak* normal structure; Weak* fixed point property; Nonexpansive mapping; Left reversible semigroup; Commutative semigroup; NONEXPANSIVE-MAPPINGS; HILBERT-SPACE; FOURIER; SEMIGROUPS; OPERATORS; THEOREM;
D O I
10.1016/j.jfa.2009.07.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate when various Banach algebras associated to a locally compact group G have the weak or weak* fixed point property for left reversible semigroups. We proved, for example, that if G is a separable locally compact group with a compact neighborhood of the identity invariant under inner automorphisms, then the Fourier-Stieltjes algebra of G has the weak* fixed point property for left reversible semigroups if and only if G is compact. This generalizes a classical result of T.C. Lim for the case when G is the circle group T. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:357 / 372
页数:16
相关论文
共 50 条