Abelian Covers and Non-Commuting Sets in a Non-Abelian p-Group Which its Central Quotient is Metacyclic

被引:0
|
作者
Kumar, Pradeep [1 ]
机构
[1] Cent Univ South Bihar, Dept Math, Gaya, India
关键词
p-Groups; Metacyclic p-groups; Abelian covers; Non-commuting sets; Commuting automorphisms; PAIRWISE NONCOMMUTING ELEMENTS; AUTOMORPHISMS; SUBGROUPS; SUBSETS;
D O I
10.1007/s41980-020-00473-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a group. A set S in G is said to be non-commuting if xy not equal yx for any two distinct elements x, y is an element of S. We define w(G) to be themaximum possible cardinality of a non-commuting set in G. In this paper, we determine w(G) for a finite non-abelian p-group G such that G/ Z(G) is metacyclic by obtaining an abelian centralizers cover of this group. As a consequence, we showthat the set of all commuting automorphisms of a finite non-abelian p-group G such that G/Z(G) is metacyclic, forms a subgroup of Aut(G).
引用
收藏
页码:1793 / 1803
页数:11
相关论文
共 50 条
  • [41] On the Topological Indices of Commuting Graphs for Finite Non-Abelian Groups
    Ali, Fawad
    Rather, Bilal A.
    Fatima, Nahid
    Sarfraz, Muhammad
    Ullah, Asad
    Alharbi, Khalid Abdulkhaliq M.
    Dad, Rahim
    SYMMETRY-BASEL, 2022, 14 (06):
  • [42] The Structure of One Type of Non-Abelian Group
    Huang Ben-wen
    Wuhan University Journal of Natural Sciences, 2002, (01) : 6 - 8
  • [43] NEW EXAMPLES OF NON-ABELIAN GROUP CODES
    Garcia Pillado, Cristina
    Gonzalez, Santos
    Markov, Victor
    Martinez, Consuelo
    Nechaev, Alexandr
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2016, 10 (01) : 1 - 10
  • [44] New Examples of Non-Abelian Group Codes
    Pillado, Cristina Garcia
    Gonzalez, Santos
    Markov, Victor
    Martinez, Consuelo
    Nechaev, Alexandr
    CODING THEORY AND APPLICATIONS, 4TH INTERNATIONAL CASTLE MEETING, 2015, 3 : 203 - 208
  • [45] Transversal group topologies on non-abelian groups
    Dikranjan, Dikran
    Tkachenko, Mikhail
    Yaschenko, Ivan
    TOPOLOGY AND ITS APPLICATIONS, 2006, 153 (17) : 3338 - 3354
  • [46] GROUP TOPOLOGIES ON NON-ABELIAN COUNTABLE GROUPS
    ZOBEL, R
    MANUSCRIPTA MATHEMATICA, 1974, 14 (03) : 207 - 216
  • [47] STATIC NON-ABELIAN FORCES AND THE PERMUTATION GROUP
    CORRIGAN, E
    PHYSICS LETTERS B, 1979, 82 (3-4) : 407 - 410
  • [48] The non-abelian Specker-group is free
    Zastrow, A
    JOURNAL OF ALGEBRA, 2000, 229 (01) : 55 - 85
  • [49] GROUP CODES OVER NON-ABELIAN GROUPS
    Garcia Pillado, Cristina
    Gonzalez, Santos
    Martinez, Consuelo
    Markov, Victor
    Nechaev, Alexander
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)
  • [50] On irreducible sextics with non-abelian fundamental group
    Degtyarev, Alex
    SINGULARITIES - NIIGATA - TOYAMA 2007, 2009, 56 : 65 - 91