Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations

被引:27
|
作者
Li, Meng [1 ,3 ]
Huang, Chengming [1 ,2 ]
Ming, Wanyuan [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Hubei, Peoples R China
[2] Huazhong Univ Sci & Technol, Hubei Key Lab Engn Modeling & Sci Comp, Wuhan 430074, Hubei, Peoples R China
[3] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2018年 / 37卷 / 02期
关键词
Time-fractional diffusion equations; Time-fractional diffusion-wave equations; Mixed finite-element method; Stability analysis; Error estimates; DISCONTINUOUS GALERKIN METHOD; NUMERICAL-METHODS; SPACE; APPROXIMATIONS;
D O I
10.1007/s40314-017-0447-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, numerical theory based on the mixed finite-element method and finite difference analog of the Caputo fractional derivative for multi-term time-fractional diffusion equations and diffusion-wave equations is analyzed. The unconditional stability and convergence results are proved for the two resulting fully discrete schemes. Finally, the obtained results are supported by numerical experiments carried out for some test problems.
引用
收藏
页码:2309 / 2334
页数:26
相关论文
共 50 条
  • [31] A wavelet approach for the multi-term time fractional diffusion-wave equation
    Sarvestani, F. Soltani
    Heydari, M. H.
    Niknam, A.
    Avazzadeh, Z.
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (03) : 640 - 661
  • [32] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Ya-bing Wei
    Yan-min Zhao
    Zheng-guang Shi
    Fen-ling Wang
    Yi-fa Tang
    Acta Mathematicae Applicatae Sinica, English Series, 2018, 34 : 828 - 841
  • [33] Nonconforming Mixed FEM Analysis for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation with Time-Space Coupled Derivative
    Cao, Fangfang
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Yao, Changhui
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2023, 15 (02) : 322 - 358
  • [34] Spatial High Accuracy Analysis of FEM for Two-dimensional Multi-term Time-fractional Diffusion-wave Equations
    Wei, Ya-bing
    Zhao, Yan-min
    Shi, Zheng-guang
    Wang, Fen-ling
    Tang, Yi-fa
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 828 - 841
  • [35] L1-type finite element method for time-fractional diffusion-wave equations on nonuniform grids
    Xu, Xianyu
    Chen, Yanping
    Huang, Jian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2024, 40 (06)
  • [36] Multidimensional solutions of time-fractional diffusion-wave equations
    Hanyga, A
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2020): : 933 - 957
  • [37] Exact solutions for time-fractional diffusion-wave equations by decomposition method
    Ray, Santanu Saha
    PHYSICA SCRIPTA, 2007, 75 (01) : 53 - 61
  • [38] An efficient alternating segment parallel finite difference method for multi-term time fractional diffusion-wave equation
    Wu, Lifei
    Pan, Yueyue
    Yang, Xiaozhong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (02):
  • [39] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [40] A high-order spectral method for the multi-term time-fractional diffusion equations
    Zheng, M.
    Liu, F.
    Anh, V.
    Turner, I.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (7-8) : 4970 - 4985