Quantifying coherence in infinite-dimensional systems

被引:108
|
作者
Zhang, Yu-Ran [1 ]
Shao, Lian-He [1 ,2 ]
Li, Yongming [2 ]
Fan, Heng [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Shaanxi Normal Univ, Coll Comp Sci, Xian 710062, Peoples R China
[3] Collaborat Innovat Ctr Quantum Matter, Beijing 100190, Peoples R China
关键词
QUANTUM INFORMATION; STATES;
D O I
10.1103/PhysRevA.93.012334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the quantification of coherence in the infinite-dimensional systems, and especially, we focus on the infinite-dimensional bosonic systems in the Fock space. We find that given the average energy constraints, the relative entropy of coherence serves as a well-defined quantification of coherence in the infinite-dimensional systems, however, the l(1) norm of coherence fails. Via using the relative entropy of coherence as the quantification of coherence, we generalize the case to multimode Fock spaces, and some special examples are considered. It is shown that with a finite average particle number, increasing the number of modes of light can enhance the relative entropy of coherence. With the mean energy constraint, our results can also be extended to other infinite-dimensional systems.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Adaptive Tracking of Infinite-Dimensional Reference Models for Linear Infinite-Dimensional Systems in Hilbert Space
    Balas, Mark J.
    Frost, Susan A.
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 1270 - 1277
  • [32] Quantifying Infinite-Dimensional Data: Functional Data Analysis in Action
    Chen K.
    Zhang X.
    Petersen A.
    Müller H.-G.
    Statistics in Biosciences, 2017, 9 (2) : 582 - 604
  • [33] Discretization of infinite-dimensional linear dynamical systems
    Bondarko, VA
    DIFFERENTIAL EQUATIONS, 1996, 32 (10) : 1309 - 1318
  • [34] Discrete Abstractions of Infinite-Dimensional Impulsive Systems
    Bachmann, P.
    Ahmed, S.
    Bajcinca, N.
    2022 EUROPEAN CONTROL CONFERENCE (ECC), 2022, : 1110 - 1117
  • [35] Synchronising hyperchaos in infinite-dimensional dynamical systems
    Tamasevicius, A
    Cenys, A
    Namajunas, A
    Mykolaitis, G
    CHAOS SOLITONS & FRACTALS, 1998, 9 (08) : 1403 - 1408
  • [36] INFINITE-DIMENSIONAL ALGEBRAS OF ANY LINEARIZATION SYSTEMS
    葛墨林
    Science China Mathematics, 1987, (03) : 279 - 287
  • [37] Robust stability of linear infinite-dimensional systems
    Bobylev, N.A.
    Bulatov, A.V.
    Avtomatika i Telemekhanika, 1999, (05): : 32 - 44
  • [38] Directed structure at infinity for infinite-dimensional systems
    Laakkonen, Petteri
    Pohjolainen, Seppo
    INTERNATIONAL JOURNAL OF CONTROL, 2011, 84 (04) : 702 - 715
  • [39] Singular perturbations in infinite-dimensional control systems
    Donchev, TD
    Dontchev, AL
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (05) : 1795 - 1812
  • [40] Constructing Entanglement Witnesses for Infinite-Dimensional Systems
    Hou, Jinchuan
    Wang, Wenli
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2019, 58 (04) : 1269 - 1281