MONTE CARLO METHODS FOR BACKWARD EQUATIONS IN NONLINEAR FILTERING

被引:0
|
作者
Milstein, G. N. [1 ]
Tretyakov, M. V. [2 ]
机构
[1] Ural State Univ, Ekaterinburg 620083, Russia
[2] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
基金
英国工程与自然科学研究理事会;
关键词
Pathwise filtering equation; stochastic partial differential equation; Monte Carlo technique; Kallianpur-Striebel formula; mean-square and weak numerical methods; PARTICLE APPROXIMATION;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider Monte Carlo methods for the classical nonlinear filtering problem. The first method is based on a backward pathwise filtering equation and the second method is related to a backward linear stochastic partial differential equation. We study convergence of the proposed numerical algorithms. The considered methods have Such advantages as a capability in principle to solve filtering problems of large dimensionality, reliable error control, and recurrency. Their efficiency is achieved due to the numerical procedures which use effective numerical schemes and variance reduction techniques. The results obtained are supported by numerical experiments.
引用
收藏
页码:63 / 100
页数:38
相关论文
共 50 条
  • [41] A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    Anderson, JL
    Anderson, SL
    MONTHLY WEATHER REVIEW, 1999, 127 (12) : 2741 - 2758
  • [42] SOLUTION TO NONLINEAR KINETIC-EQUATIONS BY MONTE-CARLO METHOD
    ERMAKOV, SM
    NEKRUTKIN, VV
    PROSHKIN, AJ
    SIZOVA, AF
    DOKLADY AKADEMII NAUK SSSR, 1976, 230 (02): : 261 - 263
  • [43] Validated Enclosure of Uncertain Nonlinear Equations Using SIVIA Monte Carlo
    Mahato, Nisha Rani
    Jaulin, Luc
    Chakraverty, S.
    Dezert, Jean
    RECENT TRENDS IN WAVE MECHANICS AND VIBRATIONS, WMVC 2018, 2020, : 455 - 468
  • [44] BACKWARD SEQUENTIAL MONTE CARLO FOR MARGINAL SMOOTHING
    Kronander, Joel
    Schon, Thomas B.
    Dahlin, Johan
    2014 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), 2014, : 368 - 371
  • [45] Monte Carlo methods
    Ginsberg, M
    DR DOBBS JOURNAL, 2000, 25 (04): : 34 - +
  • [46] MONTE CARLO METHODS
    WEISS, G
    PHYSICS TODAY, 1965, 18 (02) : 55 - &
  • [47] Monte Carlo methods
    Koch K.-R.
    GEM - International Journal on Geomathematics, 2018, 9 (01) : 117 - 143
  • [48] Monte Carlo filtering on Lie groups
    Chiuso, A
    Soatto, S
    PROCEEDINGS OF THE 39TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 2000, : 304 - 309
  • [49] Monte Carlo methods
    Kroese, Dirk P.
    Rubinstein, Reuven Y.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2012, 4 (01) : 48 - 58
  • [50] Monte Carlo methods
    Bardenet, Remi
    SOS 2012 - IN2P3 SCHOOL OF STATISTICS, 2013, 55