Scaling of geometric phases close to the topological quantum phase transition in Kitaev's quantum wire model

被引:3
|
作者
Shan, Chuan-Jia [1 ]
Li, Jin-Xin [1 ]
Cheng, Wei-Wen [1 ,2 ]
Liu, Ji-Bing [1 ]
Liu, Tang-Kun [1 ]
机构
[1] Hubei Normal Univ, Coll Phys & Elect Sci, Huangshi 435002, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Inst Signal Proc & Transmiss, Nanjing 210003, Jiangsu, Peoples R China
关键词
geometric phase; quantum phase transition; superconducting systems; MAJORANA FERMIONS; NANOWIRE; SUPERCONDUCTOR; ANYONS; COMPUTATION; INSULATORS; SIGNATURE;
D O I
10.1088/1612-2011/11/3/035202
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a unified study of the topological quantum phase transition in Kitaev's 1D p-wave spinless quantum wire model in terms of its ground state geometric phase (GP). We also analyze zero-temperature and finite-temperature scaling parameters, extracted from the GP near the critical point. The derivative of the ground-state GP is nonanalytic at the phase boundary. A finite-size scaling and finite-temperature scaling analysis are carried out and, furthermore, the scaling behavior and universality are verified numerically.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Geometric quantum phase in the spacetime of topological defects
    Bakke, K.
    Furtado, C.
    Nascimento, J. R.
    5TH INTERNATIONAL WORKSHOP DICE2010: SPACE-TIME-MATTER - CURRENT ISSUES IN QUANTUM MECHANICS AND BEYOND, 2011, 306
  • [42] Geometric phase and quantum phase transition: Two-band model
    Cui, H. T.
    Yi, Jie
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [43] Berry geometric phase and quantum transition
    Zhang, ZhongCan
    Fang, ZhenYun
    Hu, ChenGuo
    Sun, ShiJun
    2000, Science Press (24):
  • [44] Berry geometric phase and quantum transition
    Zhang, Zhongcan
    Fang, Zhenyun
    Hu, Chenguo
    Sun, Shijun
    Kao Neng Wu Li Yu Ho Wu Li/High Energy Physics and Nuclear Physics, 2000, 24 (12): : 1106 - 1114
  • [45] Berry geometric phase and quantum transition
    Zhang, ZC
    Fang, ZY
    Hu, CG
    Sun, SJ
    HIGH ENERGY PHYSICS AND NUCLEAR PHYSICS-CHINESE EDITION, 2000, 24 (12): : 1106 - 1114
  • [46] Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points
    Lian, J.
    Liang, J-Q
    Chen, G.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (06):
  • [47] Geometric phase in the Kitaev honeycomb model and scaling behaviour at critical points
    J. Lian
    J. -Q. Liang
    G. Chen
    The European Physical Journal B, 2012, 85
  • [48] Pnictides as frustrated quantum antiferromagnets close to a quantum phase transition
    Uhrig, Goetz S.
    Holt, Michael
    Oitmaa, Jaan
    Sushkov, Oleg P.
    Singh, Rajiv R. P.
    PHYSICAL REVIEW B, 2009, 79 (09):
  • [49] Unifying geometric entanglement and geometric phase in a quantum phase transition
    Mousolou, Vahid Azimi
    Canali, Carlo M.
    Sjoqvist, Erik
    PHYSICAL REVIEW A, 2013, 88 (01):
  • [50] Topological quantum phase transition in an S=2 spin chain
    Zang, Jiadong
    Jiang, Hong-Chen
    Weng, Zheng-Yu
    Zhang, Shou-Cheng
    PHYSICAL REVIEW B, 2010, 81 (22):