Forest height estimation from mountain forest areas using general model-based decomposition for polarimetric interferometric synthetic aperture radar images

被引:4
|
作者
Nghia Pham Minh [1 ]
Zou, Bin [1 ]
Cai, Hongjun [1 ]
Wang, Chengyi [2 ]
机构
[1] Harbin Inst Technol, Dept Informat Engn, Harbin 15001, Peoples R China
[2] Forestry Res Inst Heilongjiang Prov, Harbin 150081, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
polarimetric interferometric synthetic aperture radar; general model-based decomposition; forest height estimation; topography; model scattering; SCATTERING MODEL; INVERSION; PARAMETERS;
D O I
10.1117/1.JRS.8.083676
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The estimation of forest parameters over mountain forest areas using polarimetric interferometric synthetic aperture radar (PolInSAR) images is one of the greatest interests in remote sensing applications. For mountain forest areas, scattering mechanisms are strongly affected by the ground topography variations. Most of the previous studies in modeling microwave backscattering signatures of forest area have been carried out over relatively flat areas. Therefore, a new algorithm for the forest height estimation from mountain forest areas using the general model-based decomposition (GMBD) for PolInSAR image is proposed. This algorithm enables the retrieval of not only the forest parameters, but also the magnitude associated with each mechanism. In addition, general double-and single-bounce scattering models are proposed to fit for the cross-polarization and off-diagonal term by separating their independent orientation angle, which remains unachieved in the previous model-based decompositions. The efficiency of the proposed approach is demonstrated with simulated data from PolSARProSim software and ALOS-PALSAR spaceborne PolInSAR datasets over the Kalimantan areas, Indonesia. Experimental results indicate that forest height could be effectively estimated by GMBD. (C) The Authors.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Height estimation of boreal forest: Interferometric model-based inversion at L- and X-band versus HUTSCAT profiling scatterometer
    Praks, Jaan
    Kugler, Florian
    Papathanassiou, Konstantinos P.
    Hajnsek, Irena
    Hallikainen, Martti
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2007, 4 (03) : 466 - 470
  • [42] Terrain classification of polarimetric synthetic aperture radar images based on deep learning and conditional random field model
    Hu T.
    Li W.
    Qin X.
    Wang P.
    Yu W.
    Li J.
    Journal of Radars, 2019, 8 (04) : 471 - 478
  • [43] Mapping of Forest Structural Parameters in Tianshan Mountain Using Bayesian-Random Forest Model, Synthetic Aperture Radar Sentinel-1A, and Sentinel-2 Imagery
    Wang, Ting
    Xu, Wenqiang
    Bao, Anming
    Yuan, Ye
    Zheng, Guoxiong
    Naibi, Sulei
    Huang, Xiaoran
    Wang, Zhengyu
    Zheng, Xueting
    Bao, Jiayu
    Gao, Xuemei
    Wang, Di
    Wusiman, Saimire
    Nzabarinda, Vincent
    De Wulf, Alain
    REMOTE SENSING, 2024, 16 (07)
  • [44] Estimating Forest Attributes Using Observations of Canopy Height: A Model-Based Approach
    Mehtatalo, Lauri
    Nyblom, Jukka
    FOREST SCIENCE, 2009, 55 (05) : 411 - 422
  • [45] MODEL-BASED POLARIMETRIC SAR CALIBRATION METHOD USING FOREST AND SURFACE SCATTERING TARGETS
    Shimada, Masanobu
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 3736 - 3739
  • [46] Edge detection in polarimetric synthetic aperture radar images using a hybrid approach based on scattering and statistical information
    Kumar, Amit
    Sharma, Rakesh
    Kochar, Inderkumar
    Maurya, Himanshu
    Panigrahi, Rajib Kumar
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (03)
  • [47] Retrieval of timber volume and snow water equivalent over a Finnish boreal forest from airborne polarimetric Synthetic Aperture Radar
    Balzter, H
    Baker, JR
    Hallikainen, M
    Tomppo, E
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2002, 23 (16) : 3185 - 3208
  • [48] FOREST ABOVE GROUND BIOMASS ESTIMATION AND FOREST/NON-FOREST CLASSIFICATION FOR ODISHA, INDIA, USING L-BAND SYNTHETIC APERTURE RADAR (SAR) DATA
    Suresh, M.
    Chand, T. R. Kiran
    Fararoda, Rakesh
    Jha, C. S.
    Dadhwal, V. K.
    ISPRS TECHNICAL COMMISSION VIII SYMPOSIUM, 2014, 40-8 : 651 - 658
  • [49] The Research on uncertainty resulting from method and wavelength selecting in forest height inversion using simulated polarimetric interferometric SAR
    Zhang T.
    Ji Y.
    Zhang W.
    National Remote Sensing Bulletin, 2022, 26 (10) : 1963 - 1975
  • [50] Model-based principal component techniques for detection of buried landmines in multiframe synthetic aperture radar images
    Cheng, HJ
    Miller, E
    IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 334 - 336