Nonlocal Nonlinear Advection-Diffusion Equations

被引:3
|
作者
Constantin, Peter [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
Nonlocal; Advection; Diffusion; Fractional Laplacian; QUASI-GEOSTROPHIC EQUATION; GLOBAL WELL-POSEDNESS; MAXIMUM-PRINCIPLES; ACTIVE SCALAR; REGULARITY; DYNAMICS;
D O I
10.1007/s11401-016-1071-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The author reviews some results about nonlocal advection-diffusion equations based on lower bounds for the fractional Laplacian.
引用
收藏
页码:281 / 292
页数:12
相关论文
共 50 条
  • [21] Some Stability Results for Advection-Diffusion Equations
    Howes, F.A.
    Studies in Applied Mathematics, 1986, 74 (01): : 35 - 53
  • [22] ASYMPTOTIC SOLUTION OF A NONLINEAR ADVECTION-DIFFUSION EQUATION
    De Loubens, R.
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2011, 69 (02) : 389 - 401
  • [23] A nonlinear subgrid method for advection-diffusion problems
    Santos, Isaac P.
    Almeida, Regina C.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2007, 196 (45-48) : 4771 - 4778
  • [24] Local and Global Existence for Nonlocal Multispecies Advection-Diffusion Models
    Giunta, Valeria
    Hillen, Thomas
    Lewis, Mark
    Potts, Jonathan R.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (03): : 1686 - 1708
  • [25] Analytical solutions for advection and advection-diffusion equations with spatially variable coefficients
    Zoppou, C
    Knight, JH
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 144 - 148
  • [26] LATE-TIME ASYMPTOTIC SOLUTION OF NONLINEAR ADVECTION-DIFFUSION EQUATIONS WITH EQUAL EXPONENTS
    Fayard, Francois
    Ramakrishnan, T. S.
    QUARTERLY OF APPLIED MATHEMATICS, 2013, 71 (02) : 289 - 310
  • [27] Numerical solutions of space-fractional advection-diffusion equations with nonlinear source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    APPLIED NUMERICAL MATHEMATICS, 2020, 155 : 93 - 102
  • [28] IMPLICIT RADIAL POINT INTERPOLATION METHOD FOR NONLINEAR SPACE FRACTIONAL ADVECTION-DIFFUSION EQUATIONS
    Qin, Xinqiang
    Peng, Dayao
    Hu, Gang
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2020, 50 (06) : 2199 - 2212
  • [29] NON-OVERLAPPING SCHWARZ WAVEFORM-RELAXATION FOR NONLINEAR ADVECTION-DIFFUSION EQUATIONS
    Gander, Martin J.
    Lunowa, Stephan B.
    Rohde, Christian
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2023, 45 (01): : A49 - A73
  • [30] Perfectly matched layers for the heat and advection-diffusion equations
    Lantos, Nicolas
    Nataf, Frederic
    COMPTES RENDUS MATHEMATIQUE, 2010, 348 (13-14) : 781 - 785