Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm

被引:45
|
作者
Ren, Fulong [1 ,2 ]
Cao, Peng [1 ,2 ]
Li, Wei [2 ]
Zhao, Dazhe [1 ,2 ]
Zaiane, Osmar [3 ]
机构
[1] Northeastern Univ, Coll Comp Sci & Engn, Shenyang, Peoples R China
[2] Northeastern Univ, Key Lab Med Image Comp, Minist Educ, Shenyang, Peoples R China
[3] Univ Alberta, Comp Sci, Edmonton, AB, Canada
基金
中国国家自然科学基金;
关键词
Microaneurysm detection; Classification; False positive reduction; Imbalanced data learning; Ensemble learning; AUTOMATIC DETECTION; MACHINE;
D O I
10.1016/j.compmedimag.2016.07.011
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Diabetic retinopathy (DR) is a progressive disease, and its detection at an early stage is crucial for saving a patient's vision. An automated screening system for DR can help in reduce the chances of complete blindness due to DR along with lowering the work load on ophthalmologists. Among the earliest signs of DR are microaneurysms (MAs). However, current schemes for MA detection appear to report many false positives because detection algorithms have high sensitivity. Inevitably some non-MAs structures are labeled as MAs in the initial MAs identification step. This is a typical "class imbalance problem". Class imbalanced data has detrimental effects on the performance of conventional classifiers. In this work, we propose an ensemble based adaptive over-sampling algorithm for overcoming the class imbalance problem in the false positive reduction, and we use Boosting, Bagging, Random subspace as the ensemble framework to improve microaneurysm detection. The ensemble based over-sampling methods we proposed combine the strength of adaptive over-sampling and ensemble. The objective of the amalgamation of ensemble and adaptive over-sampling is to reduce the induction biases introduced from imbalanced data and to enhance the generalization classification performance of extreme learning machines (ELM). Experimental results show that our ASOBoost method has higher area under the ROC curve (AUC) and G-mean values than many existing class imbalance learning methods. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:54 / 67
页数:14
相关论文
共 50 条
  • [21] Adaptive over-sampling method for classification with application to imbalanced datasets in aluminum electrolysis
    Zhaoke Huang
    Chunhua Yang
    Xiaofang Chen
    Keke Huang
    Yongfang Xie
    Neural Computing and Applications, 2020, 32 : 7183 - 7199
  • [22] AFNFS: Adaptive fuzzy neighborhood-based feature selection with adaptive synthetic over-sampling for imbalanced data
    Sun, Lin
    Li, Mengmeng
    Ding, Weiping
    Zhang, En
    Mu, Xiaoxia
    Xu, Jiucheng
    INFORMATION SCIENCES, 2022, 612 : 724 - 744
  • [23] An Approach to Imbalanced Data Classification Based on Instance Selection and Over-Sampling
    Czarnowski, Ireneusz
    Jedrzejowicz, Piotr
    COMPUTATIONAL COLLECTIVE INTELLIGENCE, PT I, 2019, 11683 : 601 - 610
  • [24] An Over-Sampling Technique with Rejection for Imbalanced Class Learning
    Lee, Jaedong
    Kim, Noo-ri
    Lee, Jee-Hyong
    ACM IMCOM 2015, PROCEEDINGS, 2015,
  • [25] A New Over-sampling Technique Based on SVM for Imbalanced Diseases Data
    Wang, Jinjin
    Yao, Yukai
    Zhou, Hanhai
    Leng, Mingwei
    Chen, Xiaoyun
    PROCEEDINGS 2013 INTERNATIONAL CONFERENCE ON MECHATRONIC SCIENCES, ELECTRIC ENGINEERING AND COMPUTER (MEC), 2013, : 1224 - 1228
  • [26] Dynamic weighted majority based on over-sampling for imbalanced data streams
    Du, Hongle
    Thelma, Palaoag
    2021 THE 4TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INTELLIGENT SYSTEMS, CIIS 2021, 2021, : 87 - 95
  • [27] Deep Over-sampling Framework for Classifying Imbalanced Data
    Ando, Shin
    Huang, Chun Yuan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT I, 2017, 10534 : 770 - 785
  • [28] Borderline over-sampling in feature space for learning algorithms in imbalanced data environments
    Savetratanakaree, Kittipat (kittipatsavet@gmail.com), 1600, International Association of Engineers (43):
  • [29] Over-sampling methods for mixed data in imbalanced problems
    Alonso, Hugo
    da Costa, Joaquim Fernando Pinto
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [30] An Adaptive Sampling Ensemble Classifier for Learning from Imbalanced Data Sets
    Geiler, Ordonez Jon
    Hong, Li
    Yue-Jian, Guo
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 513 - 517