The relation between Euclidean and Lorentzian 2D quantum gravity

被引:41
|
作者
Ambjorn, J
Correia, J
Kristjansen, C
Loll, R
机构
[1] Niels Bohr Inst, DK-2100 Copenhagen O, Denmark
[2] Max Planck Inst Gravitati Phys, Albert Einstein Inst, D-14476 Golm, Germany
关键词
2D gravity; random triangulations; Lorentzian triangulations; transfer matrix formalism; random walk; branched polymers;
D O I
10.1016/S0370-2693(00)00058-7
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (generalized) Lorentzian space-time. This motivates a map between the parameter spaces of the two theories, under which their propagators get identified. In two dimensions, Lorentzian quantum gravity can therefore be viewed as a "renormalized" version of Euclidean quantum gravity. (C) 2000 Elsevier Science B.V. Ail rights reserved.
引用
收藏
页码:24 / 32
页数:9
相关论文
共 50 条
  • [41] Spinfoam 2D quantum gravity and discrete bundles
    Oriti, D
    Rovelli, C
    Speziale, S
    CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (01) : 85 - 108
  • [42] The virtual black hole in 2d quantum gravity
    Grumiller, D
    Kummer, W
    Vassilevich, DV
    NUCLEAR PHYSICS B, 2000, 580 (1-2) : 438 - 456
  • [43] A remark on the three approaches to 2D quantum gravity
    A. Belavin
    M. Bershtein
    G. Tarnopolsky
    JETP Letters, 2011, 93 : 47 - 51
  • [44] New critical phenomena in 2D quantum gravity
    Arnbjoern, J.
    Thorleifsson, G.
    Wexler, M.
    Nuclear Physics, Section B, 439 (1-2):
  • [45] Boundary loop models and 2D quantum gravity
    Kostov, Ivan
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2007,
  • [46] FRACTAL STRUCTURE OF 2D - QUANTUM-GRAVITY
    KNIZHNIK, VG
    POLYAKOV, AM
    ZAMOLODCHIKOV, AB
    MODERN PHYSICS LETTERS A, 1988, 3 (08) : 819 - 826
  • [47] Hybrid quantum states in 2D dilaton gravity
    Potaux, Yohan
    Sarkar, Debajyoti
    Solodukhin, Sergey N.
    PHYSICAL REVIEW D, 2023, 108 (12)
  • [48] Stabilization of 2D quantum gravity by branching interactions
    Diego, O
    PHYSICS LETTERS B, 1996, 377 (1-3) : 23 - 27
  • [49] A NONPERTURBATIVE DEFINITION OF 2D QUANTUM-GRAVITY
    MARINARI, E
    PARISI, G
    PHYSICS LETTERS B, 1990, 247 (04) : 537 - 542
  • [50] A remark on the three approaches to 2D quantum gravity
    Belavin, A.
    Bershtein, M.
    Tarnopolsky, G.
    JETP LETTERS, 2011, 93 (02) : 47 - 51