Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River Basin, China

被引:40
|
作者
Zhao, Panpan [1 ,2 ]
Lu, Haishen [3 ]
Yang, Huicai [4 ]
Wang, Wenchuan [1 ]
Fu, Guobin [2 ]
机构
[1] North China Univ Water Resources & Elect Power, Inst Water Conservancy, Zhengzhou 450045, Henan, Peoples R China
[2] CSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia
[3] Hohai Univ, Coll Hydrol & Water Resources, State Key Lab Hydrol Water Resource & Hydraul Eng, Nanjing 210098, Jiangsu, Peoples R China
[4] Hebei GEO Univ, Sch Land Resources & Urban & Rural Planning, Shijiazhuang 050031, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Climate change; CMIP5; Soil and water assessment tool (SWAT); Streamflow drought index (SDI); The Weihe river basin; Uncertainty; RUNOFF GENERATION; SWAT MODEL; UNCERTAINTIES; STREAMFLOW; TRENDS; VARIABILITY;
D O I
10.1016/j.quaint.2019.02.022
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The likelihood changes of the numbers of occurrences, duration and intensity of hydrological droughts in the Weihe River Basin in China were investigated by using the bias-corrected future climate projections from three selected Global Climate Models (GCMs) with two emission scenarios (RCP 4.5, RCP 8.5), and Soil and Water Assessment Tool (SWAT) hydrological model. Results showed that 1) The frequency of hydrological droughts, drought durations and intensities would have obvious increasing trends in the future under dry GCM condition. However, an opposite decreasing trend was shown under wet GCM condition; 2) Future precipitation changing direction and magnitudes were dominating factor for the likelihood changes of drought characteristics. Forty GCMs project a future precipitation change from - 3.42% to + 14.24%, which is the largest source of uncertainties. If the observed trends of precipitation and temperature during the last 50 years continue, then the Weihe River Basin would likely be in the dry condition of GCMs; 3) The impacts of temperature on hydrological droughts cannot be neglected and it has direct (evaporation and runoff generation) and larger magnitude indirect effects (precipitation patterns). The presented results have practical applications for regional drought mitigation planning under future climate changes.
引用
收藏
页码:37 / 46
页数:10
相关论文
共 50 条
  • [21] Impacts of climate change on hydrological processes in the headwater catchment of the Tarim River basin, China
    Liu, Zhaofei
    Xu, Zongxue
    Huang, Junxiong
    Charles, Stephen P.
    Fu, Guobin
    HYDROLOGICAL PROCESSES, 2010, 24 (02) : 196 - 208
  • [22] Impact of climate change on droughts: a case study of the Zard River Basin in Iran
    Mahdavi, Pedram
    Kharazi, Hossein Ghorbanizadeh
    WATER PRACTICE AND TECHNOLOGY, 2023, 18 (10) : 2258 - 2276
  • [23] Identification of impacts of climate change and direct human activities on streamflow in Weihe River Basin in Northwest China
    Fan Jingjing
    Huang Qiang
    Liu Dengfeng
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND BIOLOGICAL ENGINEERING, 2017, 10 (04) : 119 - 129
  • [24] Response of Runoff to Climate Change in the Weihe River Basin
    Zuo Depeng
    Xu Zongxue
    PROCEEDINGS OF THE 5TH INTERNATIONAL YELLOW RIVER FORUM ON ENSURING WATER RIGHT OF THE RIVER'S DEMAND AND HEALTHY RIVER BASIN MAINTENANCE, VOL II, 2015, : 15 - 26
  • [25] Impact of climate change and human activities on runoff in the Weihe River Basin, China
    Chang, Jianxia
    Wang, Yimin
    Istanbulluoglu, Erkan
    Bai, Tao
    Huang, Qiang
    Yang, Dawen
    Huang, Shengzhi
    QUATERNARY INTERNATIONAL, 2015, 380 : 169 - 179
  • [26] Hydrological impacts of climate change in the upper reaches of the Yangtze River Basin
    Sun, Jialan
    Lei, Xiaohui
    Tian, Yu
    Liao, Weihong
    Wang, Yuhui
    QUATERNARY INTERNATIONAL, 2013, 304 : 62 - 74
  • [27] Understanding the hydrological impacts of climate change in the Tana River Basin, Kenya
    Sood A.
    Muthuwatta L.
    Silva N.S.
    McCartney M.
    1600, International Water Management Institute (178):
  • [28] Meteorological and hydrological droughts in Mekong River Basin and surrounding areas under climate change
    Li, Yishan
    Lu, Hui
    Yang, Kun
    Wang, Wei
    Tang, Qiuhong
    Khem, Sothea
    Yang, Fan
    Huang, Yugang
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2021, 36
  • [29] Hydrological Impacts of Climate Change Simulated by HIMS Models in the Luanhe River Basin, North China
    Jiang, Yan
    Liu, Changming
    Li, Xuyong
    WATER RESOURCES MANAGEMENT, 2015, 29 (04) : 1365 - 1384
  • [30] Hydrological Impacts of Climate Change Simulated by HIMS Models in the Luanhe River Basin, North China
    Yan Jiang
    Changming Liu
    Xuyong Li
    Water Resources Management, 2015, 29 : 1365 - 1384