Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers

被引:34
|
作者
Wei, Wei [1 ,2 ,3 ]
Khan, Asad [1 ,2 ,3 ]
Huerta, E. A. [1 ,2 ,3 ,4 ,5 ]
Huang, Xiaobo [1 ,2 ,6 ]
Tian, Minyang [1 ,2 ,3 ]
机构
[1] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.physletb.2020.136029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce the use of deep learning ensembles for real-time, gravitational wave detection of spinning binary black hole mergers. This analysis consists of training independent neural networks that simultaneously process strain data from multiple detectors. The output of these networks is then combined and processed to identify significant noise triggers. We have applied this methodology in O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center. We have also benchmarked the performance of this new methodology by processing 200 hours of open source, advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our deep learning ensemble represents the first class of neural network classifiers that are trained with millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than real-time using 4 NVIDIA V100 GPUs. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Towards a robust and reliable deep learning approach for detection of compact binary mergers in gravitational wave data
    Jadhav, Shreejit
    Shrivastava, Mihir
    Mitra, Sanjit
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (04):
  • [22] Binary black hole detection rates in inspiral gravitational wave searches
    Van den Broeck, Chris
    CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (13) : L51 - L58
  • [23] Host galaxy identification for binary black hole mergers with long baseline gravitational wave detectors
    Howell, E. J.
    Chan, M. L.
    Chu, Q.
    Jones, D. H.
    Heng, I. S.
    Lee, H. -M.
    Blair, D.
    Degallaix, J.
    Regimbau, T.
    Miao, H.
    Zhao, C.
    Hendry, M.
    Coward, D.
    Messenger, C.
    Ju, L.
    Zhu, Z. -H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (04) : 4385 - 4395
  • [24] Binary black hole mergers in AGN accretion discs: gravitational wave rate density estimates
    Grobner, M.
    Ishibashi, W.
    Tiwari, S.
    Haney, M.
    Jetzer, P.
    ASTRONOMY & ASTROPHYSICS, 2020, 638
  • [25] Deep Learning for real-time gravitational wave detection and parameter estimation: Results with Advanced LIGO data
    George, Daniel
    Huerta, E. A.
    PHYSICS LETTERS B, 2018, 778 : 64 - 70
  • [26] Extraction of binary black hole gravitational wave signals from detector data using deep learning
    Chatterjee, Chayan
    Wen, Linqing
    Diakogiannis, Foivos
    Vinsen, Kevin
    PHYSICAL REVIEW D, 2021, 104 (06)
  • [27] Misaligned Spinning Binary Black Hole Mergers in Hot Magnetized Plasma
    Cattorini, Federico
    Maggioni, Sofia
    Giacomazzo, Bruno
    Haardt, Francesco
    Colpi, Monica
    Covino, Stefano
    ASTROPHYSICAL JOURNAL LETTERS, 2022, 930 (01)
  • [28] Joint detection of gravitational waves from binary black hole and binary neutron star mergers by LIGO and Virgo
    Krolak, Andrzej
    Patil, Mandar
    ZAGADNIENIA FILOZOFICZNE W NAUCE-PHILOSOPHICAL PROBLEMS IN SCIENCE, 2018, (64): : 95 - 115
  • [29] Gravitational Waves From Binary Black Hole Mergers: Modeling and Observations
    Schmidt, Patricia
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2020, 7
  • [30] Unambiguous Determination of Gravitational Waveforms from Binary Black Hole Mergers
    Reisswig, C.
    Bishop, N. T.
    Pollney, D.
    Szilagyi, B.
    PHYSICAL REVIEW LETTERS, 2009, 103 (22)