Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers

被引:34
|
作者
Wei, Wei [1 ,2 ,3 ]
Khan, Asad [1 ,2 ,3 ]
Huerta, E. A. [1 ,2 ,3 ,4 ,5 ]
Huang, Xiaobo [1 ,2 ,6 ]
Tian, Minyang [1 ,2 ,3 ]
机构
[1] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.physletb.2020.136029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce the use of deep learning ensembles for real-time, gravitational wave detection of spinning binary black hole mergers. This analysis consists of training independent neural networks that simultaneously process strain data from multiple detectors. The output of these networks is then combined and processed to identify significant noise triggers. We have applied this methodology in O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center. We have also benchmarked the performance of this new methodology by processing 200 hours of open source, advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our deep learning ensemble represents the first class of neural network classifiers that are trained with millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than real-time using 4 NVIDIA V100 GPUs. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Gravitational wave denoising of binary black hole mergers with deep learning
    Wei, Wei
    Huerta, E. A.
    PHYSICS LETTERS B, 2020, 800
  • [2] Gravitational recoil from spinning binary black hole mergers
    Herrmann, Frank
    Hinder, Ian
    Shoemaker, Deirdre
    Laguna, Pablo
    Matzner, Richard A.
    ASTROPHYSICAL JOURNAL, 2007, 661 (01): : 430 - 436
  • [3] Near real-time gravitational wave data analysis of the massive black hole binary with TianQin
    Chen, Hong-Yu
    Lyu, Xiang-Yu
    Li, En-Kun
    Hu, Yi-Ming
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (07)
  • [4] Near real-time gravitational wave data analysis of the massive black hole binary with TianQin
    Hong-Yu Chen
    Xiang-Yu Lyu
    En-Kun Li
    Yi-Ming Hu
    Science China(Physics,Mechanics & Astronomy), 2024, (07) : 179 - 190
  • [5] Calculating gravitational wave signatures from binary black hole mergers
    Centrella, JM
    ASTROPHYSICS OF GRAVITATIONAL WAVE SOURCES, 2003, 686 : 219 - 230
  • [6] GRAVITATIONAL MEMORY IN BINARY BLACK HOLE MERGERS
    Pollney, Denis
    Reisswig, Christian
    ASTROPHYSICAL JOURNAL LETTERS, 2011, 732 (01)
  • [7] Machine learning gravitational waves from binary black hole mergers
    Schmidt, Stefano
    Breschi, Matteo
    Gamba, Rossella
    Pagano, Giulia
    Rettegno, Piero
    Riemenschneider, Gunnar
    Bernuzzi, Sebastiano
    Nagar, Alessandro
    Del Pozzo, Walter
    PHYSICAL REVIEW D, 2021, 103 (04)
  • [8] NONLINEAR GRAVITATIONAL-WAVE MEMORY FROM BINARY BLACK HOLE MERGERS
    Favata, Marc
    ASTROPHYSICAL JOURNAL LETTERS, 2009, 696 (02) : L159 - L162
  • [9] Optimization of model independent gravitational wave search for binary black hole mergers using machine learning
    Mishra, T.
    O'Brien, B.
    Gayathri, V
    Bhaumik, S.
    Bartos, I
    Klimenko, S.
    PHYSICAL REVIEW D, 2021, 104 (02)
  • [10] Rapid detection of gravitational waves from binary black hole mergers using sparse dictionary learning
    Badger, Charles
    Srinivasan, Rahul
    Torres-Forne, Alejandro
    Bizouard, Marie Anne
    Font, Jose A.
    Sakellariadou, Mairi
    Lamberts, Astrid
    PHYSICAL REVIEW D, 2025, 111 (06)