Chirped pulses, Gauss sums and the factorization of numbers

被引:16
|
作者
Merkel, Wolfgang [1 ]
Crasser, Oliver
Haug, Florian
Lutz, Eric
Mack, Holger
Freyberger, Matthias
Schleich, Wolfgang P.
Averbukh, Ilya
Bienert, Marc
Girard, Bertrand
Maier, Helmut
Paulus, Gerhard G.
机构
[1] Univ Ulm, Abt Quantenphys, D-89069 Ulm, Germany
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[4] Univ Toulouse 3, CNRS, Lab Collisions Agregats & React, UMR 5589,IRSAMC, Toulouse, France
[5] Univ Ulm, Abt Zahlentheorie & Wahrscheinlichkeitstheorie, D-89069 Ulm, Germany
[6] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2006年 / 20卷 / 11-13期
关键词
chirped laser pulses; two-photon transition; quantum rotor; autocorrelation function; factorization; Gauss sums; Riemann zeta-function;
D O I
10.1142/S021797920603439X
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present two physical systems which make Cau beta sums experimentally accessible. The probability amplitude for a two-photon transition in an appropriate ladder system driven by a chirped laser pulse is determined by a Gau beta sum. The autocorrelation function of a quantum rotor is also of the form of a Gau beta sum. These examples suggest rules for determining prime factor components on the basis of the properties of Gau beta
引用
收藏
页码:1893 / 1916
页数:24
相关论文
共 50 条
  • [31] GAUSS SUMS AND KLOOSTERMAN SUMS - KLOOSTERMAN SHEAVES
    不详
    ANNALS OF MATHEMATICS STUDIES, 1988, (116): : 46 - +
  • [32] Factorization of Sums of Polynomials
    Seon-Hong Kim
    Acta Applicandae Mathematica, 2002, 73 : 275 - 284
  • [33] Factorization with exponential sums
    Stefanak, M.
    Haase, D.
    Merkel, W.
    Zubairy, M. S.
    Schleich, W. P.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (30)
  • [34] Factorization of sums of polynomials
    Kim, SH
    ACTA APPLICANDAE MATHEMATICAE, 2002, 73 (03) : 275 - 284
  • [35] CHIRPED OPTICAL PULSES
    TREACY, EB
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 168 (A3) : 400 - &
  • [36] A Note on the Classical Gauss Sums
    Wang, Tingting
    Chen, Guohui
    MATHEMATICS, 2018, 6 (12):
  • [37] Gauss sums and binomial coefficients
    Lee, DH
    Hahn, SG
    JOURNAL OF NUMBER THEORY, 2002, 92 (02) : 257 - 271
  • [38] Gauss Sums on Finite Groups
    Gomi, Yasushi
    Maeda, Taiki
    Shinoda, Ken-ichi
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (01) : 165 - 179
  • [39] The Weil representation and Gauss sums
    Bluher, A
    PACIFIC JOURNAL OF MATHEMATICS, 1996, 173 (02) : 357 - 373
  • [40] An algebraic interpretation of the Gauss sums
    Danas, G
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2001, 76 (04) : 447 - 454