Chirped pulses, Gauss sums and the factorization of numbers

被引:16
|
作者
Merkel, Wolfgang [1 ]
Crasser, Oliver
Haug, Florian
Lutz, Eric
Mack, Holger
Freyberger, Matthias
Schleich, Wolfgang P.
Averbukh, Ilya
Bienert, Marc
Girard, Bertrand
Maier, Helmut
Paulus, Gerhard G.
机构
[1] Univ Ulm, Abt Quantenphys, D-89069 Ulm, Germany
[2] Weizmann Inst Sci, Dept Chem Phys, IL-76100 Rehovot, Israel
[3] Univ Nacl Autonoma Mexico, Ctr Ciencias Fis, Cuernavaca 62251, Morelos, Mexico
[4] Univ Toulouse 3, CNRS, Lab Collisions Agregats & React, UMR 5589,IRSAMC, Toulouse, France
[5] Univ Ulm, Abt Zahlentheorie & Wahrscheinlichkeitstheorie, D-89069 Ulm, Germany
[6] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2006年 / 20卷 / 11-13期
关键词
chirped laser pulses; two-photon transition; quantum rotor; autocorrelation function; factorization; Gauss sums; Riemann zeta-function;
D O I
10.1142/S021797920603439X
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present two physical systems which make Cau beta sums experimentally accessible. The probability amplitude for a two-photon transition in an appropriate ladder system driven by a chirped laser pulse is determined by a Gau beta sum. The autocorrelation function of a quantum rotor is also of the form of a Gau beta sum. These examples suggest rules for determining prime factor components on the basis of the properties of Gau beta
引用
收藏
页码:1893 / 1916
页数:24
相关论文
共 50 条
  • [1] Factorization of numbers with Gauss sums: II. Suggestions for implementation with chirped laser pulses
    Merkel, W.
    Woelk, S.
    Schleich, W. P.
    Averbukh, I. Sh
    Girard, B.
    Paulus, G. G.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [2] Factorization of numbers with truncated Gauss sums at rational arguments
    Woelk, S.
    Feiler, C.
    Schleich, W. P.
    JOURNAL OF MODERN OPTICS, 2009, 56 (18-19) : 2118 - 2124
  • [3] Factorization of numbers with Gauss sums: III. Algorithms with entanglement
    Woelk, S.
    Schleich, W. P.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [4] Factorization of numbers with Gauss sums: I. Mathematical background
    Woelk, S.
    Merkel, W.
    Schleich, W. P.
    Averbukh, I. Sh
    Girard, B.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [5] On the Gauss sums and generalized Bernoulli numbers
    Liu, H.
    Gao, J.
    UKRAINIAN MATHEMATICAL JOURNAL, 2012, 64 (06) : 971 - 978
  • [6] On the Gauss sums and generalized Bernoulli numbers
    H. Liu
    J. Gao
    Ukrainian Mathematical Journal, 2012, 64 : 971 - 978
  • [7] Factorization with Gauss sums: scaling properties of ghost factors
    Stefanak, M.
    Merkel, W.
    Schleich, W. P.
    Haase, D.
    Maier, H.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [8] NMR experiment factors numbers with Gauss sums
    Mehring, Michael
    Mueller, Klaus
    Averbukh, Ilya Sh.
    Merkel, Wolfgang
    Schleich, Wolfgang P.
    PHYSICAL REVIEW LETTERS, 2007, 98 (12)
  • [9] Chirped quasi-phase-matching with Gauss sums for production of biphotons
    Antonosyan, D. A.
    Tamazyan, A. R.
    Kryuchkyan, G. Y.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2012, 45 (21)
  • [10] New factorization algorithm based on a continuous representation of truncated Gauss sums
    Tamma, Vincenzo
    Zhang, Heyi
    He, Xuehua
    Garuccio, Augusto
    Shih, Yanhua
    JOURNAL OF MODERN OPTICS, 2009, 56 (18-19) : 2125 - 2132