A simple, fast and excellent protocol for the synthesis of phenols using CuFe2O4 magnetic nanoparticles

被引:0
|
作者
Chutia, Rituparna [1 ]
Chetia, Bolin [1 ]
机构
[1] Dibrugarh Univ, Dept Chem, Dibrugarh 786004, Assam, India
关键词
Phenols; CuFe2O4 magnetic nanoparticles; short reaction time; heterogeneous catalysis; easy recyclability; IPSO-HYDROXYLATION; ARYLBORONIC ACIDS; CU2O NANOPARTICLES; BORONIC ACIDS; OXIDATION; POLYPHENOLS; METABOLISM; CATALYSIS; CHEMISTRY; LIGAND;
D O I
10.1007/s12039-019-1624-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper describes a very mild, quick and simple protocol for the synthesis of phenols using CuFe2O4 magnetic nanoparticles as a catalyst. The nanosized catalyst has an average diameter of 17.63 nm. The magnetic nanoparticles were characterized by SEM, EDX, VSM, XRD and TEM analysis. The synthesis of phenols from phenylboronic acids using H2O2 as an oxidant proceeded very well with excellent yields. Heterogeneous catalyst, easy recyclability, mild reaction conditions, short reaction time added as an advantage for the present protocol.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Synthesis and Properties of Thin CuFe2O4 Films
    Popova, V. Yu.
    Petrov, V. V.
    Gulyaeva, I. A.
    Ivanishcheva, A. P.
    Tolstunov, M. I.
    Bayan, E. M.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2022, 95 (08) : 1129 - 1135
  • [42] Hydrothermally synthesized CuFe2O4/rGO and CuFe2O4/porous carbon nanocomposites
    Kotsyubynsky, Volodymyr
    Zapukhlyak, Ruslan
    Boychuk, Volodymyra
    Hodlevska, Myroslava
    Rachiy, Bogdan
    Yaremiy, Ivan
    Kachmar, Andrii
    Hodlevsky, Mykola
    APPLIED NANOSCIENCE, 2022, 12 (04) : 1131 - 1138
  • [43] Preparation and catalytic performance of CuFe2O4 nanoparticles supported on reduced graphene oxide (CuFe2O4/rGO) for phenol degradation
    Othman, Israa
    Abu Haija, Mohammad
    Ismail, Issam
    Zain, Jerina Hisham
    Banat, Fawzi
    MATERIALS CHEMISTRY AND PHYSICS, 2019, 238
  • [44] Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor
    Deepshikha Rathore
    Supratim Mitra
    Rajnish Kurchania
    R. K. Pandey
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 1925 - 1932
  • [45] Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application
    Fotukian, Seyedeh Maryam
    Barati, Aboulfazl
    Soleymani, Meysam
    Alizadeh, Mohammad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 816
  • [46] Adsorption and gas sensing properties of CuFe2O4 nanoparticles
    Abu Haija, Mohammad
    Basina, Georgia
    Banat, Fawzi
    Ayesh, Ahmad, I
    MATERIALS SCIENCE-POLAND, 2019, 37 (02): : 289 - 295
  • [47] Cubic to Tetragonal Phase Transition in CuFe2O4 Nanoparticles
    Mallesh, Shanigaram
    Gu, Minji
    Kim, Ki Hyeon
    JOURNAL OF MAGNETICS, 2021, 26 (01) : 7 - 13
  • [48] Synthesis and characterization CuFe2O4 nanoparticles prepared by the hydrothermal ultrasonic assisted method
    Rus, S. F.
    Vlazan, P.
    Novaconi, S.
    Sfirloaga, P.
    Grozescu, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2012, 14 (3-4): : 293 - 297
  • [49] Synthesis of Spinel-Structure CuFe2O4 Nanoparticles and Their Effective Electrocatalysis Properties
    Lu Pan
    Bo Xu
    JOM, 2013, 65 : 695 - 701
  • [50] Physicochemical properties of CuFe2O4 nanoparticles as a gas sensor
    Rathore, Deepshikha
    Mitra, Supratim
    Kurchania, Rajnish
    Pandey, R. K.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (03) : 1925 - 1932