Oil Spill Image Segmentation Based on Fuzzy C-means Algorithm

被引:0
|
作者
Sun Guangmin [1 ,2 ]
Ma Haocong [1 ]
Zhao Dequn [1 ]
Zhang Fan [1 ]
Jia Linan [1 ]
Sun Junling [1 ]
机构
[1] Beijing Univ Technol, Dept Elect Engn, Beijing 100124, Peoples R China
[2] Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
关键词
Oil aerial image; color model; YCbCr color space; fuzzy C-means Algorithm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Oil spill may cause serious pollution of the marine environment. Unmanned aerial vehicles remote sensing system can be used to monitor oil spill conditions. In order to identify the oil spill area on aerial image accurately, the first step is oil spill region segmentation. The paper presents an image segmentation method of oil spill area based on fuzzy C-means Algorithm. Firstly, according to the color characteristics of the oil, the paper selects YCbCr color space as the feature space. Then, the paper uses fuzzy clustering algorithm to divide the color feature space. Finally, according to oil color model, the paper selects clustering result as the segmentation results of oil spill area. Experiment show that the proposed algorithm's accuracy for oil region segmentation of calibration attain to 95 percent.
引用
收藏
页码:406 / 409
页数:4
相关论文
共 50 条
  • [31] Segmentation for brain MRI image based on the fuzzy c-means clustering algorithm
    Yin, Xi
    Li, Yimin
    Li, Feng
    INFORMATION SCIENCE AND MANAGEMENT ENGINEERING, VOLS 1-3, 2014, 46 : 1177 - 1182
  • [32] Color-Based Image Segmentation by Means of a Robust Intuitionistic Fuzzy C-means Algorithm
    Mujica-Vargas, Dante
    Vianney Kinani, Jean Marie
    de Jesus Rubio, Jose
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2020, 22 (03) : 901 - 916
  • [33] Color-Based Image Segmentation by Means of a Robust Intuitionistic Fuzzy C-means Algorithm
    Dante Mújica-Vargas
    Jean Marie Vianney Kinani
    José de Jesús Rubio
    International Journal of Fuzzy Systems, 2020, 22 : 901 - 916
  • [34] Medical Image Segmentation based on Improved Ant Colony Algorithm and Fuzzy C-means Algorithm
    Gao, Xueshan
    Rong, Zhinan
    Wang, Shigang
    2nd International Conference on Sensors, Instrument and Information Technology (ICSIIT 2015), 2015, : 400 - 404
  • [35] A Spatial Fuzzy C-means Algorithm with Application to MRI Image Segmentation
    Adhikari, Sudip Kumar
    Sing, Jamuna Kanta
    Basu, Dipak Kumar
    Nasipuri, Mita
    2015 EIGHTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2015, : 175 - 180
  • [36] Lie Group Fuzzy C-means Clustering Algorithm for Image Segmentation
    Sun, Hao-Cheng
    Liu, Li
    Li, Fan-Zhang
    Ruan Jian Xue Bao/Journal of Software, 2024, 35 (10): : 4806 - 4825
  • [37] Neighbourhood weighted fuzzy c-means clustering algorithm for image segmentation
    Zhao Zaixin
    Cheng Lizhi
    Cheng Guangquan
    IET IMAGE PROCESSING, 2014, 8 (03) : 150 - 161
  • [38] Quadtree algorithm for improving fuzzy C-means method in image segmentation
    Ghorbanzad, Zahra
    Mofrad, Farshid Babapour
    Ghorbanzad, Z., 1600, International Journal of Computer Science Issues (IJCSI) (09) : 6 - 3
  • [39] Application of improved fuzzy c-means algorithm to texture image segmentation
    Hou, Yanli
    Information Technology Journal, 2013, 12 (21) : 6379 - 6384
  • [40] Hesitant fuzzy C-means algorithm and its application in image segmentation
    Zeng, Wenyi
    Ma, Rong
    Yin, Qian
    Zheng, Xin
    Xu, Zeshui
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (03) : 3681 - 3695