A recovery-based linear C0 finite element method for a fourth-order singularly perturbed Monge-Ampere equation
被引:5
|
作者:
Chen, Hongtao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Chen, Hongtao
[1
,2
]
Feng, Xiaobing
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tennessee, Dept Math, Knoxville, TN 37996 USAXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Feng, Xiaobing
[3
]
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USAXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Zhang, Zhimin
[4
,5
]
机构:
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[3] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[4] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[5] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Monge-Ampere equation;
Vanishing moment method;
Gradient recovery;
Linear finite element;
65N30;
35J60;
D O I:
10.1007/s10444-021-09847-w
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
This paper develops a new recovery-based linear C-0 finite element method for approximating the weak solution of a fourth-order singularly perturbed Monge-Ampere equation, which is known as the vanishing moment approximation of the Monge-Ampere equation. The proposed method uses a gradient recovery technique to define a discrete Laplacian for a given linear C-0 finite element function (offline), the discrete Laplacian is then employed to discretize the biharmonic operator appeared in the equation. It is proved that the proposed C-0 linear finite element method has a unique solution using a fixed point argument and the corresponding error estimates are derived in various norms. Numerical experiments are also provided to verify the theoretical error estimates and to demonstrate the efficiency of the proposed recovery-based linear C-0 finite element method.
机构:
Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Peoples R China
Chen, Hongtao
Guo, Hailong
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAXiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Peoples R China
Guo, Hailong
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R ChinaXiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Peoples R China
Zhang, Zhimin
Zou, Qingsong
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Sch Data & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R ChinaXiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Sch Math Sci, Xiamen 361005, Peoples R China
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, Susanne C.
Gudi, Thirupathi
论文数: 0引用数: 0
h-index: 0
机构:
Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, IndiaLouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Gudi, Thirupathi
Neilan, Michael
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Neilan, Michael
Sung, Li-Yeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Brenner, Susanne C.
Sung, Li-yeng
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Sung, Li-yeng
Tan, Zhiyu
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Tan, Zhiyu
Zhang, Hongchao
论文数: 0引用数: 0
h-index: 0
机构:
Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
Louisiana State Univ, Ctr Computat & Technol, Baton Rouge, LA 70803 USALouisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA