Rf-modulation of mid-infrared distributed feedback quantum cascade lasers

被引:54
|
作者
Hinkov, Borislav [1 ]
Hugi, Andreas [1 ]
Beck, Mattias [1 ]
Faist, Jerome [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Auguste Piccard Hof 1, CH-8093 Zurich, Switzerland
来源
OPTICS EXPRESS | 2016年 / 24卷 / 04期
关键词
HIGH-FREQUENCY MODULATION; SPECTROSCOPY; LOCKING;
D O I
10.1364/OE.24.003294
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present the electrical and optical characterization and theoretical modeling of the transient behavior of regular 4.5-mu m single-mode emitting distributed feedback (DFB) quantum cascade lasers (QCLs). Low residual capacitance together with a high-frequency optimized three-terminal coplanar waveguide configuration leads to modulation frequencies up to 23.5 GHz (optical) and 26.5 GHz (electrical), respectively. A maximum 3-dB cut-off value of 6.6 GHz in a microwave rectification scheme is obtained, with a significant increase in electrical modulation bandwidth when increasing the DC-current for the entire current range of the devices. Optical measurements by means of FTIR-spectroscopy and a heterodyne beating experiment reveal the presence of a resonance peak, due to coupling of the lasing DFB-with its neighboring below-threshold Fabry-Perot-(FP-) mode, when modulating around the cavity roundtrip frequency. This resonance is modeled by a 2-mode Maxwell-Bloch formalism. It enhances only one sideband and consequently leads to the first experimental observation of the single-sideband regime in such kind of devices. (C) 2016 Optical Society of America
引用
收藏
页码:3294 / 3312
页数:19
相关论文
共 50 条
  • [31] Mid-infrared quantum cascade lasers for flow injection analysis
    Lendl, B
    Frank, J
    Schindler, R
    Muller, A
    Beck, M
    Faist, J
    ANALYTICAL CHEMISTRY, 2000, 72 (07) : 1645 - 1648
  • [32] Biomedical applications of mid-infrared quantum cascade lasers - a review
    Isensee, Katharina
    Kroeger-Lui, Niels
    Petrich, Wolfgang
    ANALYST, 2018, 143 (24) : 5888 - 5911
  • [33] GaAs/AlGaAs unipolar mid-infrared quantum cascade lasers
    Hvozdara, L
    Gianordoli, S
    Strasser, G
    Schrenk, W
    Unterrainer, K
    Gornik, E
    COMPOUND SEMICONDUCTORS 1999, 2000, (166): : 363 - 366
  • [34] Mid-Infrared GaAs/AlGaAs Quantum Cascade Lasers Technology
    Szerling, A.
    Karbownik, P.
    Kosiel, K.
    Kubacka-Traczyk, J.
    Pruszynska-Karbownik, E.
    Pluska, M.
    Bugajski, M.
    ACTA PHYSICA POLONICA A, 2009, 116 : S45 - S48
  • [35] Importance of Growth Direction in Mid-Infrared Quantum Cascade Lasers
    Bouzi, Pierre M.
    Chiu, YenTing
    Deutsch, Christoph
    Tokranov, Vadim
    Oktyabrsky, Serge
    Gmachl, Claire
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2013,
  • [36] Thermal analysis of mid-infrared quantum-cascade lasers
    Evans, Craig A.
    Indjin, Dragan
    Ikonic, Zoran
    Harrison, Paul
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XVI, 2008, 6889
  • [37] Polarization and isolation control for Quantum Cascade Lasers in the Mid-Infrared
    Wu, Sheng
    Deev, Andrei
    QUANTUM SENSING AND NANOPHOTONIC DEVICES XI, 2014, 8993
  • [38] Thermal Management of Mid-Infrared (IR) Quantum Cascade Lasers
    Chaparala, Satish C.
    Xie, Feng
    Caneau, Catherine
    Hughes, Lawrence C.
    Zah, Chung-en
    2010 PROCEEDINGS 60TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC), 2010, : 693 - 699
  • [39] Simulation of transport properties in mid-infrared quantum cascade lasers
    Li Ying-Ying
    Ru Guo-Ping
    Li, Z. -M. Simon
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2012, 31 (06) : 486 - 490
  • [40] Mid-infrared interband cascade lasers
    Hoefling, Sven
    Weih, Robert
    Kamp, Martin
    2016 IEEE PHOTONICS CONFERENCE (IPC), 2016, : 80 - 81