Predicting bicycling and walking traffic using street view imagery and destination data

被引:42
|
作者
Hankey, Steve [1 ]
Zhang, Wenwen [2 ]
Le, Huyen T. K. [3 ]
Hystad, Perry [4 ]
James, Peter [5 ,6 ,7 ]
机构
[1] Virginia Tech, Sch Publ & Int Affairs, 140 Otey St, Blacksburg, VA 24061 USA
[2] Rutgers State Univ, Edward J Bloustein Sch Planning & Publ Policy, 33 Livingston Ave, New Brunswick, NJ 08901 USA
[3] Ohio State Univ, Dept Geog, 154 N Oval Mall, Columbus, OH 43210 USA
[4] Oregon State Univ, Coll Publ Hlth & Human Sci, 2520 Campus Way, Corvallis, OR 97331 USA
[5] Harvard Med Sch, Dept Populat Med, 401 Pk Dr, Boston, MA 02215 USA
[6] Harvard Pilgrim Hlth Care Inst, 401 Pk Dr, Boston, MA 02215 USA
[7] Harvard TH Chan Sch Publ Hlth, Dept Environm Hlth, 677 Huntington Ave, Boston, MA 02115 USA
关键词
Physical activity; Activity space; Direct-demand model; Non-motorized transport; BUILT-ENVIRONMENT; HEALTH-BENEFITS; GREEN SPACES; TRAVEL; MODELS; NEIGHBORHOODS; TRANSPORT; IMPACT; TRIPS; FORM;
D O I
10.1016/j.trd.2020.102651
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Few studies predict spatial patterns of bicycling and walking across multiple cities using street level data. This study aims to model bicycle and pedestrian traffic at 4145 count locations across 20 U.S. cities using new micro-scale variables: (1) destinations from Google Point of Interest data (e.g., restaurants, schools) and (2) pixel classification from Google Street View imagery (e.g., sidewalks, trees, streetlights). We applied machine learning algorithms to assess how well street-level variables predict bicycling and walking rates. Adding street-level variables improved out-of-sample prediction accuracy of bicycling and walking activities. We also found that street-level variables (10-fold CV R-2: 0.82-0.88) may be a useful alternative to Census data (0.85-0.88). Macro-scale factors (e.g., zoning) captured by Census data and micro-scale factors (e. g., streetscapes) captured in our street-level data are both useful for predicting active travel. Our models provide a new tool for estimating and understanding the spatial patterns of active travel.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Estimating city-level travel patterns using street imagery: A case study of using Google Street View in Britain
    Goel, Rahul
    Garcia, Leandro M. T.
    Goodman, Anna
    Johnson, Rob
    Aldred, Rachel
    Murugesan, Manoradhan
    Brage, Soren
    Bhalla, Kavi
    Woodcock, James
    PLOS ONE, 2018, 13 (05):
  • [32] Transport Object Detection in Street View Imagery Using Decomposed Convolutional Neural Networks
    Bai, Yunpeng
    Shang, Changjing
    Li, Ying
    Shen, Liang
    Zeng, Xianwen
    Shen, Qiang
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 403 - 414
  • [33] Transport Object Detection in Street View Imagery Using Decomposed Convolutional Neural Networks
    Bai, Yunpeng
    Shang, Changjing
    Li, Ying
    Shen, Liang
    Jin, Shangzhu
    Shen, Qiang
    MATHEMATICS, 2023, 11 (18)
  • [34] Using street view imagery for 3-D survey of rock slope failures
    Voumard, Jereme
    Abellan, Antonio
    Nicolet, Pierrick
    Penna, Ivanna
    Chanut, Marie-Aurelie
    Derron, Marc-Henri
    Jaboyedoff, Michel
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2017, 17 (12) : 2093 - 2107
  • [35] Interrater Reliability of Historical Virtual Audits Using Archived Google Street View Imagery
    Harding, Alyson B.
    Glynn, Nancy W.
    Studenski, Stephanie A.
    Clarke, Philippa J.
    Divecha, Ayushi A.
    Rosso, Andrea L.
    JOURNAL OF AGING AND PHYSICAL ACTIVITY, 2021, 29 (01) : 63 - 70
  • [36] Developing Sidewalk Inventory Data Using Street View Images
    Kang, Bumjoon
    Lee, Sangwon
    Zou, Shengyuan
    SENSORS, 2021, 21 (09)
  • [37] Greener the safer? Effects of urban green space on community safety and perception of safety using satellite and street view imagery data
    He, Qian
    Wu, Ling
    Lee, Claire Seungeun
    Zhu, Chunwu
    Bai, Weishan
    Guo, Weichen
    Ye, Xinyue
    JOURNAL OF CRIMINAL JUSTICE, 2025, 97
  • [38] Alternative scenarios for urban tree surveys: Investigating the species, structures, and diversities of street trees using street view imagery
    Hu, Yanjun
    Wang, Han
    Yan, Hai
    Han, Qian
    Nan, Xinge
    Zhao, Kechun
    Bao, Zhiyi
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 895
  • [39] Using Google Street View imagery to capture micro built environment characteristics in drug places, compared with street robbery
    Zhou, Hanlin
    Liu, Lin
    Lan, Minxuan
    Zhu, Weili
    Song, Guangwen
    Jing, Fengrui
    Zhong, Yanran
    Su, Zihan
    Gu, Xin
    COMPUTERS ENVIRONMENT AND URBAN SYSTEMS, 2021, 88
  • [40] Assessing Street Space Quality Using Street View Imagery and Function-Driven Method: The Case of Xiamen, China
    Wang, Moyang
    He, Yijun
    Meng, Huan
    Zhang, Ye
    Zhu, Bao
    Mango, Joseph
    Li, Xiang
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (05)