Continuous spectrum and uniform localization for ergodic Schrodinger operators

被引:12
|
作者
Jitomirskaya, SY
机构
[1] Department of Mathematics, University of California, Irvine
基金
美国国家科学基金会;
关键词
D O I
10.1006/jfan.1996.3019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study localization for ergodic families of discrete Schrodinger operators. We prove that instability of pure point spectrum implies absence of uniform localization. (C) 1997 Academic Press.
引用
收藏
页码:312 / 322
页数:11
相关论文
共 50 条
  • [21] Absolutely continuous spectrum for random Schrodinger operators on the Bethe strip
    Klein, Abel
    Sadel, Christian
    MATHEMATISCHE NACHRICHTEN, 2012, 285 (01) : 5 - 26
  • [22] Absence of singular continuous spectrum for perturbed discrete Schrodinger operators
    Liu, Wencai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (02) : 1420 - 1429
  • [23] Singular continuous spectrum for a class of nonprimitive substitution Schrodinger operators
    De Oliveira, CR
    Lima, MV
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) : 145 - 156
  • [24] SINGULAR CONTINUOUS-SPECTRUM FOR PALINDROMIC SCHRODINGER-OPERATORS
    HOF, A
    KNILL, O
    SIMON, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 174 (01) : 149 - 159
  • [25] A Geometric Approach to Absolutely Continuous Spectrum for Discrete Schrodinger Operators
    Froese, Richard
    Hasler, David
    Spitzer, Wolfgang
    RANDOM WALKS, BOUNDARIES AND SPECTRA, 2011, 64 : 201 - +
  • [26] Absolutely continuous spectrum of a class of random nonergodic Schrodinger operators
    Frank, RL
    Safronov, O
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2005, 2005 (42) : 2559 - 2577
  • [27] ON THE UNIFORM ERGODIC THEOREM AND THE SPECTRUM
    MBEKHTA, M
    ZEMANEK, J
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (12): : 1155 - 1158
  • [28] SCHRODINGER OPERATORS IN UNIFORM NORM
    KOLLER, H
    SCHECHTER, M
    WEDER, RA
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1977, 26 (03): : 303 - 311
  • [29] Ergodic Schrodinger operators in the infinite measure setting
    Boshernitzan, Michael
    Damanik, David
    Fillman, Jake
    Lukic, Milivoje
    JOURNAL OF SPECTRAL THEORY, 2021, 11 (02) : 873 - 902
  • [30] LOCALIZATION FOR OFF-DIAGONAL DISORDER AND FOR CONTINUOUS SCHRODINGER-OPERATORS
    DELYON, F
    SIMON, B
    SOUILLARD, B
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 109 (01) : 157 - 165