ABC-PSO: An Efficient Bioinspired Metaheuristic for Parameter Estimation in Nonlinear Regression

被引:1
|
作者
Gerardo de-los-Cobos-Silva, Sergio [1 ,2 ]
Gutierrez Andrade, Miguel Angel [1 ,2 ]
Lara-Velazquez, Pedro [1 ,2 ]
Rincon Garcia, Eric Alfredo [1 ,2 ]
Anselmo Mora-Gutierrez, Roman [1 ,2 ]
Ponsich, Antonin [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Ingn Elect, Unidad Iztapalapa, Mexico City 09340, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Sistemas, Unidad Azcapotzalco, Mexico City 02200, DF, Mexico
关键词
ABC; PSO; Nonlinear regression; ALGORITHMS;
D O I
10.1007/978-3-319-62428-0_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinear regression is a statistical technique widely used in research which creates models that conceptualize the relation among many variables that are related in complex forms. These models are widely used in different areas such as economics, biology, finance, engineering, etc. These models are subsequently used for different processes, such as prediction, control or optimization. Many standard regression methods have been proved that produce misleading results in certain data sets; this is especially true in ordinary least squares. In this article three metaheuristic models for parameter estimation of nonlinear regression models are described: Artificial Bee Colony, Particle Swarm Optimization and a novel hybrid algorithm ABC-PSO. These techniques were tested on 27 databases of the NIST collection with different degrees of difficulty. The experimental results provide evidence that the proposed algorithm finds consistently good results.
引用
收藏
页码:388 / 400
页数:13
相关论文
共 50 条
  • [21] Efficient PSO-based Algorithm for Parameter Estimation of McKibben PAM Model
    Okabe, Atsushi
    Ishikawa, Takahiro
    Kogiso, Kiminao
    Nishiyama, Yu
    2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), 2017, : 1414 - 1419
  • [22] An Integration Based Optimization Approach (ABC and PSO) for Parameter Estimation in BLRP Model for Disaggregating Daily Rainfall
    Hassan, Zulkarnain
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2020, 28 (01): : 385 - 402
  • [23] PARAMETER ESTIMATION FOR COMPUTATIONALLY INTENSIVE NONLINEAR REGRESSION WITH AN APPLICATION TO CLIMATE MODELING
    Drignei, Dorin
    Forest, Chris E.
    Nychka, Doug
    ANNALS OF APPLIED STATISTICS, 2008, 2 (04): : 1217 - 1230
  • [24] Genetic algorithms in parameter estimation for nonlinear regression models: an experimental approach
    Kapanoglu, Muzaffer
    Koc, Ilker Ozan
    Erdogmus, Senol
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2007, 77 (10) : 851 - 867
  • [25] LNAPL volume calculation: Parameter estimation by nonlinear regression of saturation profiles
    Lundegard, PD
    Mudford, BS
    GROUND WATER MONITORING AND REMEDIATION, 1998, 18 (03): : 88 - 93
  • [26] A METHOD FOR PARAMETER-ESTIMATION OF NONLINEAR-REGRESSION WITH AUTOCORRELATED ERRORS
    DARGAHINOUBARY, GR
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1990, 19 (08) : 2907 - 2923
  • [27] A METHOD OF MOMENTS APPROACH TO PARAMETER ESTIMATION IN INTRINSICALLY NONLINEAR REGRESSION MODELS
    Singh, Trijya
    ADVANCES AND APPLICATIONS IN STATISTICS, 2016, 49 (01) : 1 - 20
  • [28] A New Hybrid Genetic Algorithm for Parameter Estimation of Nonlinear Regression Modeling
    Chen, Jinshan
    PROCEEDINGS OF THE 15TH INTERNATIONAL CONFERENCE ON MAN-MACHINE-ENVIRONMENT SYSTEM ENGINEERING, 2015, 356 : 261 - 266
  • [29] Parameter estimation for Hammerstein nonlinear controlled auto-regression models
    Fan, Wei
    Ding, Feng
    Shi, Yang
    2007 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION AND LOGISTICS, VOLS 1-6, 2007, : 1007 - +
  • [30] LNAPL volume calculation: Parameter estimation by nonlinear regression of saturation profiles
    Lundegard, Paul D.
    Mudford, Brett S.
    Ground Water Monitoring and Remediation, 18 (03): : 88 - 93