Incremental Clustering for Categorical Data Using Clustering Ensemble

被引:0
|
作者
Li Taoying [1 ]
Chne Yan [1 ]
Qu Lili [1 ]
Mu Xiangwei [1 ]
机构
[1] Dalian Maritime Univ, Transportat Management Coll, Dalian 116026, Peoples R China
关键词
DataMining; Clustering; Incremental Clustering; Clustering Ensemble; K-MEANS ALGORITHM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
More and more data in practice is changing every minute and been collected in incremental mode, and incremental clustering has attracted much of researchers' attention. However, little research now focuses on partitioning categorical data in incremental mode. How to design incremental clustering for categorical data is an urgent problem. We propose an incremental clustering for categorical data using clustering ensemble in this paper. We firstly prune redundant attributes if needed, and then make use of true values of different attributes to form clustering memberships, and next use clustering ensemble to merge or divide clusters to gain optimal clustering. Finally, the proposed algorithm is applied in Yellow- Small dataset, Diagnosis dataset and Zoo dataset and results show that it is effective.
引用
收藏
页码:2519 / 2524
页数:6
相关论文
共 50 条
  • [41] Space Structure and Clustering of Categorical Data
    Qian, Yuhua
    Li, Feijiang
    Liang, Jiye
    Liu, Bing
    Dang, Chuangyin
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2016, 27 (10) : 2047 - 2059
  • [42] Conceptual clustering categorical data with uncertainty
    Xia, Yuni
    Xi, Bowei
    19TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, VOL I, PROCEEDINGS, 2007, : 329 - +
  • [43] Clustering Categorical Data Based on Representatives
    Aranganayagi, S.
    Thangavel, K.
    THIRD 2008 INTERNATIONAL CONFERENCE ON CONVERGENCE AND HYBRID INFORMATION TECHNOLOGY, VOL 1, PROCEEDINGS, 2008, : 599 - +
  • [44] Clustering categorical data in projected spaces
    Mohamed Bouguessa
    Data Mining and Knowledge Discovery, 2015, 29 : 3 - 38
  • [45] Fuzzy rough clustering for categorical data
    Shuliang Xu
    Shenglan Liu
    Jian Zhou
    Lin Feng
    International Journal of Machine Learning and Cybernetics, 2019, 10 : 3213 - 3223
  • [46] A data labeling method for clustering categorical data
    Cao, Fuyuan
    Liang, Jiye
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (03) : 2381 - 2385
  • [47] Fuzzy clustering for categorical multivariate data
    Oh, CH
    Honda, K
    Ichihashi, H
    JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, 2001, : 2154 - 2159
  • [48] Efficiency Based Categorical Data Clustering
    Kalaivani, K.
    Raghavendra, A. P. V.
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMPUTING RESEARCH (ICCIC), 2012, : 550 - 553
  • [49] Clustering From Categorical Data Sequences
    Crane, Harry
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (510) : 810 - 823
  • [50] Summarizing categorical data by clustering attributes
    Michael Mampaey
    Jilles Vreeken
    Data Mining and Knowledge Discovery, 2013, 26 : 130 - 173