Plasmon-assisted chemical vapor deposition

被引:148
|
作者
Boyd, David A. [1 ]
Greengard, Leslie
Brongersma, Mark
El-Naggar, Mohamed Y.
Goodwin, David G.
机构
[1] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[3] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
关键词
D O I
10.1021/nl062061m
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We introduce a new chemical vapor deposition (CVD) process that can be used to selectively deposit materials of many different types. The technique makes use of the plasmon resonance in nanoscale metal structures to produce the local heating necessary to initiate deposition when illuminated by a focused low-power laser. We demonstrate the technique, which we refer to as plasmon-assisted CVD (PACVD), by patterning the spatial deposition of PbO and TiO2 on glass substrates coated with a dispersion of 23 nm gold particles. The morphology of both oxide deposits is consistent with local laser-induced heating of the gold particles by more than 150 degrees C. We show that temperature changes of this magnitude are consistent with our analysis of the heat-loss mechanisms. The technique is general and can be used to spatially control the deposition of virtually any material for which a CVD process exists.
引用
收藏
页码:2592 / 2597
页数:6
相关论文
共 50 条
  • [41] Plasmon-assisted optical trapping and anti-trapping
    Ivinskaya, Aliaksandra
    Petrov, Mihail I.
    Bogdanov, Andrey A.
    Shishkin, Ivan
    Ginzburg, Pavel
    Shalin, Alexander S.
    LIGHT-SCIENCE & APPLICATIONS, 2017, 6 : e16258 - e16258
  • [42] Emerging materials for plasmon-assisted photoelectrochemical water splitting
    Subramanyam, Palyam
    Meena, Bhagatram
    Biju, Vasudevanpillai
    Misawa, Hiroaki
    Challapalli, Subrahmanyam
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS, 2022, 51
  • [43] Multiline Operation from a Single Plasmon-Assisted Laser
    Hernandez-Pinilla, D.
    Molina, P.
    de las Heras, C.
    Bravo-Abad, J.
    Bausa, L. E.
    Ramirez, M. O.
    ACS PHOTONICS, 2018, 5 (02): : 406 - 412
  • [44] A review of recent progress in plasmon-assisted nanophotonic devices
    Jian WANG
    Frontiers of Optoelectronics, 2014, 7 (03) : 320 - 337
  • [45] Thermal effects - an alternative mechanism for plasmon-assisted photocatalysis
    Dubi, Yonatan
    Un, Ieng Wai
    Sivan, Yonatan
    CHEMICAL SCIENCE, 2020, 11 (19) : 5017 - 5027
  • [46] Plasmon-assisted radiolytic energy conversion in aqueous solutions
    Baek Hyun Kim
    Jae W. Kwon
    Scientific Reports, 4
  • [47] Modeling Nanoscale Plasmon-assisted Bubble Nucleation and Applications
    Furlani, Edward P.
    Swihart, Mark T.
    Litchinitser, Natalia
    Delametter, Christopher N.
    Carter, Melissa
    NANOTECHNOLOGY 2011: ELECTRONICS, DEVICES, FABRICATION, MEMS, FLUIDICS AND COMPUTATIONAL, NSTI-NANOTECH 2011, VOL 2, 2011, : 470 - 473
  • [48] Plasmon-Assisted Nanopoling of Poly(Vinyl Difluoride) Films
    Chen, Fangqi
    Wang, Yunxia
    Wang, Shuangshuang
    Zhai, Baoxing
    Lu, Xiaolin
    Sun, Bo
    Ding, Tao
    ADVANCED OPTICAL MATERIALS, 2021, 9 (10)
  • [49] Plasmon-Assisted Directional Infrared Photoluminescence of HgTe Nanocrystals
    Bossavit, Erwan
    Dang, Tung Huu
    He, Puyuan
    Cavallo, Mariarosa
    Khalili, Adrien
    Dabard, Corentin
    Zhang, Huichen
    Gacemi, Djamal
    Silly, Mathieu G. G.
    Abadie, Claire
    Gallas, Bruno
    Pierucci, Debora
    Todorov, Yanko
    Sirtori, Carlo
    Diroll, Benjamin T. T.
    Degiron, Aloyse
    Lhuillier, Emmanuel
    Vasanelli, Angela
    ADVANCED OPTICAL MATERIALS, 2023, 11 (22)
  • [50] Biochemical Sensing with Surface Plasmon-Assisted Optical Fibers
    Caucheteur, Christophe
    Voisin, Valerie
    Megret, Patrice
    2013 15TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON 2013), 2013,