Multiple kernel low-rank representation-based robust multi-view subspace clustering

被引:41
|
作者
Zhang, Xiaoqian [1 ,2 ]
Ren, Zhenwen [1 ,3 ]
Sun, Huaijiang [1 ]
Bai, Keqiang [2 ]
Feng, Xinghua [2 ]
Liu, Zhigui [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Sichuan, Peoples R China
[3] Southwest Univ Sci & Technol, Sch Natl Def Sci & Technol, Mianyang 621010, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multiple kernel; Subspace clustering; Multi-view data; Low-rank representation; Weighted Schatten p-norm; SCHATTEN P-NORM; SPARSE; CORRENTROPY; MINIMIZATION; REGULARIZER; SIGNAL;
D O I
10.1016/j.ins.2020.10.059
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Owing to the presence of complex noise, it is extremely challenging to learn a low-dimensional subspace structure directly from the original data. In addition, the nonlinear structure of the data makes multi-view subspace clustering more difficult. In this paper, we propose a multiple kernel low-rank representation-based robust multi-view subspace clustering method (MKLR-RMSC) that combines a learnable low-rank multiple kernel trick with co-regularization. MKLR-RMSC mainly condus the following four tasks: 1) fully mining the complementary information provided by the different views in the feature spaces, 2) the containment of multiple low-dimensional subspaces in the feature space data, 3) allowing all view-specific representations towards a common centroid, and 4) effectively dealing with non-Gaussian noise in data. In our model, the weighted Schatten p-norm is applied to fully explore the effects of different ranks while approaching the original low-rank hypothesis. Moreover, different predefined learning kernel matrices are designed for different views, which is more conducive to mining the unique and complementary information of different views. In addition, as a robust measure, correntropy is applied in MKLR-RMSC. Our method is more effective and robust than several of the most advanced methods on six commonly used datasets. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:324 / 340
页数:17
相关论文
共 50 条
  • [31] Multi-view Clustering Based on Low-rank Representation and Adaptive Graph Learning
    Huang, Yixuan
    Xiao, Qingjiang
    Du, Shiqiang
    Yu, Yao
    NEURAL PROCESSING LETTERS, 2022, 54 (01) : 265 - 283
  • [32] Leveraging Transformer-based autoencoders for low-rank multi-view subspace clustering
    Lin, Yuxiu
    Liu, Hui
    Yu, Xiao
    Zhang, Caiming
    PATTERN RECOGNITION, 2025, 161
  • [33] Low-Rank Kernel Tensor Learning for Incomplete Multi-View Clustering
    Wu, Tingting
    Feng, Songhe
    Yuan, Jiazheng
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 14, 2024, : 15952 - 15960
  • [34] Robust discriminant low-rank representation for subspace clustering
    Zhao, Xian
    An, Gaoyun
    Cen, Yigang
    Wang, Hengyou
    Zhao, Ruizhen
    SOFT COMPUTING, 2019, 23 (16) : 7005 - 7013
  • [35] Constrained Low-Rank Representation for Robust Subspace Clustering
    Wang, Jing
    Wang, Xiao
    Tian, Feng
    Liu, Chang Hong
    Yu, Hongchuan
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (12) : 4534 - 4546
  • [36] Robust discriminant low-rank representation for subspace clustering
    Xian Zhao
    Gaoyun An
    Yigang Cen
    Hengyou Wang
    Ruizhen Zhao
    Soft Computing, 2019, 23 : 7005 - 7013
  • [37] Enriched Robust Multi-View Kernel Subspace Clustering
    Zhang, Mengyuan
    Liu, Kai
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2022, 2022, : 1992 - 2001
  • [38] Multi-view Subspace Clustering with View Correlations via low-rank tensor learning
    Zheng, Qinghai
    Zhu, Jihua
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [39] Multi-view clustering with Laplacian rank constraint based on symmetric and nonnegative low-rank representation
    Gao, Chiwei
    Xu, Ziwei
    Chen, Xiuhong
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 236
  • [40] A new nonconvex multi-view subspace clustering via learning a clean low-rank representation tensor
    Zhang, Xiaoqing
    Guo, Xiaofeng
    Pan, Jianyu
    INVERSE PROBLEMS, 2024, 40 (12)