A many-body treatment of Hamiltonian lattice gauge theory

被引:7
|
作者
Ligterink, NE [1 ]
Walet, NR [1 ]
Bishop, RF [1 ]
机构
[1] UMIST, Dept Phys, Manchester M60 1QD, Lancs, England
关键词
D O I
10.1016/S0375-9474(99)00748-4
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
The Hamiltonian SU(N) lattice gauge theory is studied in terms of angular variables. We show that the one-plaquette problem can be mapped onto a fermion problem for arbitrary N. The low-lying energy spectrum is investigated numerically.
引用
收藏
页码:983C / 986C
页数:4
相关论文
共 50 条
  • [41] Multifractals from Hamiltonian many-body molecular dynamics
    Hoover, WG
    PHYSICS LETTERS A, 1997, 235 (04) : 357 - 362
  • [42] The advantage of quantum control in many-body Hamiltonian learning
    Dutkiewicz, Alicja
    O'Brien, Thomas E.
    Schuster, Thomas
    QUANTUM, 2024, 8
  • [43] Neutrino many-body flavor evolution: The full Hamiltonian
    Cirigliano, Vincenzo
    Sen, Srimoyee
    Yamauchi, Yukari
    PHYSICAL REVIEW D, 2024, 110 (12)
  • [44] THERMODYNAMICALLY EQUIVALENT HAMILTONIAN FOR SOME MANY-BODY PROBLEMS
    WENTZEL, G
    PHYSICAL REVIEW, 1960, 120 (05): : 1572 - 1575
  • [45] On the structure of the essential spectrum of a model many-body Hamiltonian
    T. Kh. Rasulov
    Mathematical Notes, 2008, 83 : 80 - 87
  • [46] Simulating typical entanglement with many-body Hamiltonian dynamics
    Nakata, Yoshifumi
    Murao, Mio
    PHYSICAL REVIEW A, 2011, 84 (05):
  • [47] Many-body Hamiltonian with screening parameter and ionization energy
    Arulsamy, Andrew Das
    PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (04): : 615 - 631
  • [48] A Many-Body Hamiltonian for Nanoparticles Immersed in a Polymer Solution
    Woodward, Clifford E.
    Forsman, Jan
    LANGMUIR, 2015, 31 (01) : 22 - 26
  • [49] Many-body Hamiltonian with screening parameter and ionization energy
    Andrew das Arulsamy
    Pramana, 2010, 74 : 615 - 631
  • [50] THE MANY-BODY NUCLEAR HAMILTONIAN FOR VANVLECK ENHANCED COMPOUNDS
    BOWDEN, GJ
    CLARK, RG
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1983, 16 (06): : 1089 - 1098