Online data-driven fuzzy clustering with applications to real-time robotic tracking

被引:33
|
作者
Liu, PX [1 ]
Meng, MQH
机构
[1] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[2] Chinese Univ Hong Kong, Dept Elect Engn, Hong Kong, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
data clustering; fuzzy theory; robot; target tracking;
D O I
10.1109/TFUZZ.2004.832521
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robotic target tracking has been used in a variety of applications. Due to limited sampling rate, sensory characteristics and processing delays, an important issue in such systems is to extrapolate ahead the trajectory (position, orientation, velocity, and/or acceleration) of moving targets from past observations. This paper introduces a novel online data-driven fuzzy clustering algorithm that is based on the Maximum Entropy Principle for this particular task. In this algorithm, the fuzzy inference mechanism is extracted automatically from observed data without human help, which thus eliminates the necessity of expert's knowledge and a priori information on moving targets, as required by most traditional techniques. This algorithm does not require training, which enables it to work in a completely online fashion. Another important and distinct advantage of the algorithm exists in the fact that it is very fast and efficient in terms of computational cost and thus can be implemented in real time. In the meantime, the introduced algorithm is able to adapt quickly to the dynamics of moving targets. All these desired features make it especially suitable for the task to predict the trajectory of moving targets in robotic tracking. Simulation results show the effectiveness and efficiency of the presented algorithm. © 2004 IEEE.
引用
收藏
页码:516 / 523
页数:8
相关论文
共 50 条
  • [41] The data-driven approach as an operational real-time flood forecasting model
    Phuoc Khac-Tien Nguyen
    Chua, Lloyd Hock-Chye
    HYDROLOGICAL PROCESSES, 2012, 26 (19) : 2878 - 2893
  • [42] Data-Driven Method for Real-Time Reconstruction of the Structural Displacement Field
    Yan, Jun
    Du, Hongze
    Bu, Yufeng
    Jiang, Lizhe
    Xu, Qi
    Zhao, Chunyu
    JOURNAL OF AEROSPACE ENGINEERING, 2024, 37 (03)
  • [43] REAL-TIME SUPPLY CHAIN SIMULATION: A BIG DATA-DRIVEN APPROACH
    Vieira, Antonio A. C.
    Dias, Luis M. S.
    Santos, Maribel Y.
    Pereira, Guilherme A. B.
    Oliveira, Jose A.
    2019 WINTER SIMULATION CONFERENCE (WSC), 2019, : 548 - 559
  • [44] Data-Driven Curvature for Real-Time Line Drawing of Dynamic Scenes
    Kalogerakis, Evangelos
    Nowrouzezahrai, Derek
    Simari, Patricio
    McCrae, James
    Hertzmann, Aaron
    Singh, Karan
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (01):
  • [45] A Regularized Real-Time Integrator for Data-Driven Control of Heating Channels
    Ghnatios, Chady
    Champaney, Victor
    Pasquale, Angelo
    Chinesta, Francisco
    COMPUTATION, 2022, 10 (10)
  • [46] Real-time data-driven traffic simulation for performance measure estimation
    Henclewood, Dwayne
    Suh, Wonho
    Guin, Angshuman
    Guensler, Randall
    Fujimoto, Richard M.
    Hunter, Michael P.
    IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (08) : 562 - 571
  • [47] Data-driven method for real-time reconstruction of antenna element displacement
    Jin, Kang
    Peng, Gaoliang
    Zhang, Wei
    Li, Zhixiong
    Wang, Jinghan
    Yuan, Hao
    COMPUTERS & STRUCTURES, 2025, 311
  • [48] Data-driven Real-time Economic Regulation Method for Household Energy
    Wang Y.
    Dong W.
    Chen Y.
    Yang Q.
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2022, 46 (13): : 21 - 29
  • [49] Automatic data-driven real-time segmentation and recognition of surgical workflow
    Dergachyova, Olga
    Bouget, David
    Huaulme, Arnaud
    Morandi, Xavier
    Jannin, Pierre
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2016, 11 (06) : 1081 - 1089
  • [50] Data-driven real-time health assessment method of rolling bearings
    Wang Q.
    Zhang C.
    Chen W.
    Liu X.
    Zhang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2023, 29 (07): : 2211 - 2223