Global methods for dynamic optimization and mixed-integer dynamic optimization

被引:81
|
作者
Chachuat, Benoit
Singer, Adam B.
Barton, Paul I.
机构
[1] MIT, Dept Chem Engn, Proc Syst Engn Lab, Cambridge, MA 02139 USA
[2] Swiss Fed Inst Technol, Automat Control Lab, CH-1015 Lausanne, Switzerland
[3] ExxonMobil Upstream Res Co, Houston, TX USA
关键词
D O I
10.1021/ie0601605
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
An overview of global methods for dynamic optimization and mixed-integer dynamic optimization (MIDO) is presented, with emphasis placed on the control parametrization approach. These methods consist of extending existing continuous and mixed- integer global optimization algorithms to encompass solution of problems with ODEs embedded. A prerequisite for so doing is a convexity theory for dynamic optimization as well as the ability to build valid convex relaxations for Bolza-type functionals. For solving dynamic optimization problems globally, our focus is on the use of branch-and-bound algorithms; on the other hand, MIDO problems are handled by adapting the outer-approximation algorithm originally developed for mixed-integer nonlinear problems (MINLPs) to optimization problems embedding ODEs. Each of these algorithms is thoroughly discussed and illustrated. Future directions for research are also discussed, including the recent developments of general, convex, and concave relaxations for the solutions of nonlinear ODEs.
引用
收藏
页码:8373 / 8392
页数:20
相关论文
共 50 条
  • [41] Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology
    Gonzalez, Patricia
    Argueso-Alejandro, Pablo
    Penas, David R.
    Pardo, Xoan C.
    Saez-Rodriguez, Julio
    Banga, Julio R.
    Doallo, Ramon
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (07): : 3471 - 3498
  • [42] Hybrid parallel multimethod hyperheuristic for mixed-integer dynamic optimization problems in computational systems biology
    Patricia González
    Pablo Argüeso-Alejandro
    David R. Penas
    Xoan C. Pardo
    Julio Saez-Rodriguez
    Julio R. Banga
    Ramón Doallo
    The Journal of Supercomputing, 2019, 75 : 3471 - 3498
  • [43] An exact penalty global optimization approach for mixed-integer programming problems
    S. Lucidi
    F. Rinaldi
    Optimization Letters, 2013, 7 : 297 - 307
  • [44] Integrating process dynamics within batch process scheduling via mixed-integer dynamic optimization
    Capon-Garcia, Elisabet
    Guillen-Gosalbez, Gonzalo
    Espuna, Antonio
    CHEMICAL ENGINEERING SCIENCE, 2013, 102 : 139 - 150
  • [45] A case study in simultaneous design and control using rigorous, mixed-integer dynamic optimization models
    Bansal, V
    Perkins, JD
    Pistikopoulos, EN
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2002, 41 (04) : 760 - 778
  • [46] An exact penalty global optimization approach for mixed-integer programming problems
    Lucidi, S.
    Rinaldi, F.
    OPTIMIZATION LETTERS, 2013, 7 (02) : 297 - 307
  • [47] Outer approximation for global optimization of mixed-integer quadratic bilevel problems
    Thomas Kleinert
    Veronika Grimm
    Martin Schmidt
    Mathematical Programming, 2021, 188 : 461 - 521
  • [48] Parallel Global Optimization for Non-convex Mixed-Integer Problems
    Barkalov, Konstantin
    Lebedev, Ilya
    SUPERCOMPUTING (RUSCDAYS 2019), 2019, 1129 : 98 - 109
  • [49] GLOBAL OPTIMIZATION OF MIXED-INTEGER MODELS WITH QUADRATIC AND SIGNOMIAL FUNCTIONS: A REVIEW
    Misener, Ruth
    Floudas, Christodoulos A.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2012, 11 (03) : 317 - 336
  • [50] A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems
    Gergel, Victor
    Barkalov, Konstantin
    Lebedev, Ilya
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 78 - 81