Anderson localization of light in disordered superlattices containing graphene layers

被引:10
|
作者
Chaves, A. J. [1 ,2 ]
Peres, N. M. R. [1 ,2 ]
Pinheiro, F. A. [3 ,4 ,5 ]
机构
[1] Univ Minho, Dept Phys, P-4710057 Braga, Portugal
[2] Univ Minho, Ctr Phys, P-4710057 Braga, Portugal
[3] Univ Fed Rio de Janeiro, Inst Fis, BR-21941972 Rio De Janeiro, RJ, Brazil
[4] Univ Southampton, Optoelect Res Ctr, Southampton SO17 1BJ, Hants, England
[5] Univ Southampton, Ctr Photon Metamat, Southampton SO17 1BJ, Hants, England
关键词
PLASMONICS; SYSTEMS;
D O I
10.1103/PhysRevB.92.195425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We perform a theoretical investigation of light propagation and Anderson localization in one-dimensional disordered superlattices composed of dielectric stacks with graphene sheets in between. Disorder is introduced either on graphene material parameters (e.g., Fermi energy) or on the widths of the dielectric stacks. We derive an analytic expression for the localization length xi, and we compare it to numerical simulations using the transfer-matrix technique; a very good agreement is found. We demonstrate that the presence of graphene may strongly attenuate the anomalously delocalized Brewster modes, and it is at the origin of a periodic dependence of xi on frequency, in contrast to the usual asymptotic decay, xi proportional to omega(-2). By unveiling the effects of graphene on Anderson localization of light, we pave the way for new applications of graphene-based, disordered photonic devices in the THz spectral range.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Transverse Anderson localization of mid-infrared light in a chalcogenide transversely disordered optical fiber
    Nakatani, Asuka
    Tong Hoang Tuan
    Matsumoto, Morio
    Sakai, Goichi
    Suzuki, Takenobu
    Ohishi, Yasutake
    OPTICS EXPRESS, 2022, 30 (04): : 5159 - 5166
  • [42] Conductance fluctuation of edge-disordered graphene nanoribbons: Crossover from diffusive transport to Anderson localization
    Takashima, Kengo
    Yamamoto, Takahiro
    APPLIED PHYSICS LETTERS, 2014, 104 (09)
  • [43] Slow light - Anderson localization of slow light
    Vardeny, Z. Valy
    Nahata, Ajay
    NATURE PHOTONICS, 2008, 2 (02) : 75 - 76
  • [44] Transport Properties of Disordered Graphene Layers
    Gryglas-Borysiewicz, M.
    Jouault, B.
    Tworzydlo, J.
    Lewinska, S.
    Strupinski, W.
    Baranowski, J. M.
    ACTA PHYSICA POLONICA A, 2009, 116 (05) : 838 - 840
  • [45] Anderson localization for two interacting electrons in a disordered chain
    Evangelou, SN
    Xiong, SJ
    Economou, EN
    PHYSICAL REVIEW B, 1996, 54 (12) : 8469 - 8473
  • [46] NUMERICAL STUDY OF LOCALIZATION IN ANDERSON MODEL FOR DISORDERED SYSTEMS
    YOSHINO, S
    OKAZAKI, M
    SOLID STATE COMMUNICATIONS, 1976, 20 (01) : 81 - 83
  • [47] PROBLEM OF NONTRANSPORT OF ELECTRONS IN DISORDERED SYSTEMS (ANDERSON LOCALIZATION)
    ATHREYA, KB
    SUBRAMANIAN, RR
    KUMAR, N
    CURRENT SCIENCE, 1972, 41 (24): : 867 - 868
  • [48] Controlling Anderson Localization in Disordered Photonic Crystal Waveguides
    Smolka, Stephan
    Garcia, Pedro D.
    Lodahl, Peter
    2010 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO) AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (QELS), 2010,
  • [49] Anderson localization of composite excitations in disordered optomechanical arrays
    Roque, Thales Figueiredo
    Peano, Vittorio
    Yevtushenko, Oleg M.
    Marquardt, Florian
    NEW JOURNAL OF PHYSICS, 2017, 19
  • [50] Anderson localization in a periodic photonic lattice with a disordered boundary
    Naether, U.
    Meyer, J. M.
    Stuetzer, S.
    Tuennermann, A.
    Nolte, S.
    Molina, M. I.
    Szameit, A.
    OPTICS LETTERS, 2012, 37 (04) : 485 - 487