Gain flattening approach to physical EDFA for 16 x 40 Gb/s NRZ-DPSK WDM optical communication systems

被引:9
|
作者
Singh, Surinder [1 ]
Kaler, R. S.
机构
[1] Giani Zail Singh Coll Engn & Technol, Dept Elect & Commun Engn, Bathinda 151001, Punjab, India
[2] Thapar Inst Engn & Technol, Patiala, Punjab, India
关键词
EDFA; DPSK; WDM; gain flattening;
D O I
10.1080/01468030600817092
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We are using different approaches to gain flattening in EDFAs without using additional components; i.e., gain flattening filter, dispersion shift fiber, periodic gratings, etc. By using gain flatten approach 3, it is possible to achieve the transmission of sixteen channels at 40 Gb/s wavelength division multiplexing (WDM) over a transmission distance of 490 km by single-mode fiber and dispersion-compensating fiber at a span of 70 km with channel spacing of 200 GHz. We observed the bit error rate less than 10(-9) and power of received signal more than -5 dBm with NRZ-DPSK format.
引用
收藏
页码:363 / 374
页数:12
相关论文
共 50 条
  • [31] NRZ versus RZ in 10-40-Gb/s dispersion-managed WDM transmission systems
    Hayee, MI
    Willner, AE
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (08) : 991 - 993
  • [32] Fiber nonlinearity and dispersion mitigation in 40-Gb/s NRZ WDM transmission using a multichannel optical equalizer
    Mikhailov, V
    Doerr, CR
    Appathurai, S
    Killey, RI
    Bayvel, P
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) : 376 - 378
  • [33] Electronic Post-compensation of Fiber Nonlinearity for 40 Gb/s RZ-DPSK WDM Transmission Systems
    Ahmed, Nisar
    Hayee, M. I.
    2010 23RD ANNUAL MEETING OF THE IEEE PHOTONICS SOCIETY, 2010, : 207 - +
  • [34] WDM transmission of 16 x 10.709 Gb/s over 640-km SSMF using cascaded semiconductor optical amplifiers and DPSK modulation format
    Dong, Y
    Mo, JY
    Li, ZH
    Li, ZH
    Wang, YX
    Lu, C
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (10) : 2359 - 2361
  • [35] 4 x 12.5 Gb/s WDM Optical Wireless Communication System for Indoor Applications
    Wang, Ke
    Nirmalathas, Ampalavanapillai
    Lim, Christina
    Skafidas, Efstratios
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (13) : 1988 - 1996
  • [36] Polarization mode dispersion mitigation for 40Gbit/s NRZ optical communication systems
    Lorenzetto, G
    Galtarossa, A
    Santagiustina, M
    Someda, CG
    Palmieri, L
    Fiorone, R
    PROCEEDINGS OF THE IASTED INTERNATIONAL CONFERENCE ON WIRELESS AND OPTICAL COMMUNICATIONS, 2002, : 180 - 184
  • [37] Analysis of Four Wave Mixing Effects in 16 ×10 Gb/S WDM Optical Communication System
    Beniwal P.
    Kedia D.
    Journal of Optical Communications, 2021, 42 (04) : 669 - 674
  • [38] PIN/Preamp receiver modules for 40 Gb/s optical communication systems
    Takechi, M
    Araki, K
    Furukawa, Y
    Sato, K
    Tokumitsu, T
    Kobayashi, M
    Onishi, H
    Dutta, AK
    Shigematsu, H
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATIONS II, 2002, 4870 : 42 - 50
  • [39] PIN/Preamp receiver modules for 40 Gb/s optical communication systems
    Takechi, M
    Araki, K
    Furukawa, Y
    Sato, K
    Tokumitsu, T
    Kobayashi, M
    Onishi, H
    Dutta, AK
    Shigematsu, H
    OPTICAL TRANSMISSION SYSTEMS AND EQUIPMENT FOR WDM NETWORKING, 2002, 4872 : 449 - 457
  • [40] Impact of the fiber type and dispersion management on the performance of an NRZ 16 x 40 Gb/s DWDM transmission system
    Pincemin, E
    Grot, D
    Borsier, C
    Ania-Castañón, JD
    Turitsyn, SK
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (10) : 2362 - 2364