An Extended Cubic B-spline Collocation Scheme for Time Fractional Sub-diffusion Equation

被引:13
|
作者
Akram, Tayyaba [1 ]
Abbas, Muhammad [2 ]
Ismail, Ahmad Izani [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Univ Sargodha, Dept Math, Sargodha 40100, Pakistan
关键词
DIFFERENCE METHOD;
D O I
10.1063/1.5136449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, an extended cubic B-spline scheme is developed to solve the time fractional sub-diffusion equation. The time fractional derivative is represented using Caputo's formula and the discretization utilizes the theta-weighted scheme. The scheme is unconditionally stable and the convergence is shown to be of second order. The results of numerical experiments indicate the effectiveness of the proposed method.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Numerical Solution of Time Fractional Burgers Equation by Cubic B-spline Finite Elements
    Esen, Alaattin
    Tasbozan, Orkun
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (03) : 1325 - 1337
  • [42] DEVELOPMENT AND ANALYSIS OF NEW APPROXIMATION OF EXTENDED CUBIC B-SPLINE TO THE NONLINEAR TIME FRACTIONAL KLEIN-GORDON EQUATION
    Akram, Tayyaba
    Abbas, Muhammad
    Riaz, Muhammad Bilal
    Ismail, Ahmad Izani
    Ali, Norhashidah Mohd
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2020, 28 (08)
  • [43] Numerical Solutions of the Modified Burgers Equation by a Cubic B-spline Collocation Method
    Kutluay, Selcuk
    Ucar, Yusuf
    Yagmurlu, N. Murat
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1603 - 1614
  • [44] The Exponential Cubic B-Spline Collocation Method for the Kuramoto-Sivashinsky Equation
    Ersoy, Ozlem
    Dag, Idiris
    FILOMAT, 2016, 30 (03) : 853 - 861
  • [45] Numerical Solutions of the Modified Burgers Equation by a Cubic B-spline Collocation Method
    Selcuk Kutluay
    Yusuf Ucar
    N. Murat Yagmurlu
    Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1603 - 1614
  • [46] Numerical solution of hyperbolic telegraph equation by cubic B-spline collocation method
    Sharifi, Shokofeh
    Rashidinia, Jalil
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 281 : 28 - 38
  • [47] NUMERICAL SOLUTION OF FRACTIONAL RELAXATION-OSCILLATION EQUATION USING CUBIC B-SPLINE WAVELET COLLOCATION METHOD
    Chandel, Raghvendra S.
    Singh, Amardeep
    Chouhan, Devendra
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2016, (36): : 399 - 414
  • [48] Cubic B-spline collocation method and its application for anomalous fractional diffusion equations in transport dynamic systems
    Sayevand, K.
    Yazdani, A.
    Arjang, F.
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (09) : 2173 - 2186
  • [49] Collocation Approach Based on an Extended Cubic B-Spline for a Second-Order Volterra Partial Integrodifferential Equation
    George, Reny
    Yaseen, Muhammad
    Khan, Sana
    JOURNAL OF FUNCTION SPACES, 2022, 2022
  • [50] Orthogonal spline collocation scheme for the multi-term time-fractional diffusion equation
    Qiao, Leijie
    Xu, Da
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (08) : 1478 - 1493