Multiple object tracking using A* association algorithm with dynamic weights

被引:5
|
作者
Xi, Zhenghao [1 ]
Tang, Shengchun [2 ,3 ]
Wu, Jianzhen [1 ]
Zheng, Yang [3 ]
机构
[1] Shanghai Univ Engn Sci, Sch Elect & Elect Engn, Shanghai, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Elect Informat & Control Natl Expt Teaching Ctr, Beijing, Peoples R China
[3] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-object tracking; A* algorithm; flow network model; integer programming;
D O I
10.3233/IFS-151683
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Persistently tracking multiple objects is very challenging when there exit occlusions. We present a tracking association approach based on the A* algorithm. We first formulate the multiple object tracking as an integer programming problem of the flow network. Under this framework, the integer assumption is relaxed to a standard linear programming problem. Therefore, the global optimal solution can quickly be obtained using the A* algorithm with dynamic weights. The proposed method avoids the difficulties of integer programming and more importantly, it has a lower worst-case complexity than competing methods but a better tracking accuracy and robustness in complex environments. Experiment results revealed that our proposed method achieved state-of-the-art time costs and can operate in real-time.
引用
收藏
页码:2059 / 2072
页数:14
相关论文
共 50 条
  • [31] MULTIPLE HYPOTHESIS TRACKING AND JOINT PROBABILISTIC DATA ASSOCIATION FILTERS FOR MULTIPLE SPACE OBJECT TRACKING
    Mishra, Utkarsh R.
    Adurthi, Nagavenkat
    Majji, Manoranjan
    Singla, Puneet
    ASTRODYNAMICS 2018, PTS I-IV, 2019, 167 : 2403 - 2412
  • [32] Fluoroscopic tracking of multiple implanted fiducial markers using multiple object tracking
    Tang, Xiaoli
    Sharp, Greg C.
    Jiang, Steve B.
    PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (14): : 4081 - 4098
  • [33] Probabilistic object tracking using multiple features
    Serby, D
    Esther-Koller-Meier
    Van Gool, L
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 184 - 187
  • [34] Object Tracking using Multiple Motion Modalities
    Denman, Simon
    Fookes, Clinton
    Sridharan, Sridha
    Chandran, Vinod
    ICSPCS: 2ND INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS, PROCEEDINGS, 2008, : 670 - 679
  • [35] Multiple object tracking using particle filters
    Jaward, M.
    Mihaylova, L.
    Canagarajah, N.
    Bull, D.
    2006 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2006, : 2151 - +
  • [36] Multiple object tracking using elastic matching
    Luo, XZ
    Bhandarkar, SM
    AVSS 2005: ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE, PROCEEDINGS, 2005, : 123 - 128
  • [37] Multiple object tracking using local PCA
    Beleznai, Csaba
    Fruehstueck, Bernhard
    Bischof, Horst
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 79 - +
  • [38] MULTIPLE OBJECT TRACKING USING A TRANSFORM SPACE
    Li, Minglei
    Li, Jiasong
    Tamayo, Alexis
    Nan, Liangliang
    XXIV ISPRS CONGRESS IMAGING TODAY, FORESEEING TOMORROW, COMMISSION IV, 2022, 5-4 : 137 - 143
  • [39] SiamRDT: An Object Tracking Algorithm Based on a Reliable Dynamic Template
    Zhang, Qian
    Wang, Zihao
    Liang, Hong
    SYMMETRY-BASEL, 2022, 14 (04):
  • [40] An Efficient Object Tracking Algorithm based on Dynamic Particle Filter
    Raudonis, V.
    Simutis, R.
    Paulauskaite-Taraseviciene, A.
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2009, (03) : 93 - 98