Exact bounds for steepest descent algorithms of L-convex function minimization

被引:14
|
作者
Murota, Kazuo [1 ]
Shioura, Akiyoshi [2 ]
机构
[1] Univ Tokyo, Grad Sch Informat Sci & Technol, Tokyo 1138656, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Sendai, Miyagi 9808579, Japan
关键词
Discrete convex function; Analysis of algorithm; Discrete optimization; Steepest descent algorithm; RESTORATION; AUCTION;
D O I
10.1016/j.orl.2014.06.005
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We analyze minimization algorithms for L-q-convex functions in discrete convex analysis and establish exact bounds for the number of iterations required by the steepest descent algorithm and its variants. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:361 / 366
页数:6
相关论文
共 31 条
  • [11] A Hybrid Steepest-Descent Algorithm for Convex Minimization Over the Fixed Point Set of Multivalued Mappings
    Arfat, Yasir
    Kumam, Poom
    Khan, Muhammad Aqeel Ahmad
    Cho, Yeol Je
    CARPATHIAN JOURNAL OF MATHEMATICS, 2023, 39 (01) : 303 - 314
  • [12] Fast Gradient Descent for Convex Minimization Problems with an Oracle Producing a (δ, L)-Model of Function at the Requested Point
    Gasnikov, A. V.
    Tyurin, A. I.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2019, 59 (07) : 1085 - 1097
  • [13] Fast Gradient Descent for Convex Minimization Problems with an Oracle Producing a (δ, L)-Model of Function at the Requested Point
    A. V. Gasnikov
    A. I. Tyurin
    Computational Mathematics and Mathematical Physics, 2019, 59 : 1085 - 1097
  • [14] Scaling algorithms for M-convex function minimization
    Moriguchi, S
    Murota, K
    Shioura, A
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (05) : 922 - 929
  • [15] Hybrid steepest-descent methods for systems of variational inequalities with constraints of variational inclusions and convex minimization problems
    Kong, Zhao-Rong
    Ceng, Lu-Chuan
    Liou, Yeong-Cheng
    Wen, Ching-Feng
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (03): : 874 - 901
  • [16] Stochastic L(sic)-convex Function Minimization
    Zhang, Haixiang
    Zheng, Zeyu
    Lavaei, Javad
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [17] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    Yutong Dai
    Yang Weng
    Journal of Systems Science and Complexity, 2020, 33 : 345 - 365
  • [18] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    DAI Yutong
    WENG Yang
    Journal of Systems Science & Complexity, 2020, 33 (02) : 345 - 365
  • [19] Synchronous Parallel Block Coordinate Descent Method for Nonsmooth Convex Function Minimization
    Dai, Yutong
    Weng, Yang
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2020, 33 (02) : 345 - 365
  • [20] Non monotone algorithms for unconstrained minimization: Upper bounds on function values
    Garcia-Palomares, UM
    SYSTEM MODELING AND OPTIMIZATION, 2006, 199 : 91 - 100