TANNAKA-KREIN DUALITY FOR COMPACT QUANTUM HOMOGENEOUS SPACES. I. GENERAL THEORY

被引:0
|
作者
De Commer, Kenny [1 ]
Yamashita, Makoto
机构
[1] Univ Cergy Pontoise, Dept Math, UMR CNRS 8088, F-95000 Cergy Pontoise, France
来源
基金
新加坡国家研究基金会;
关键词
compact quantum groups; C*-algebras; Hilbert modules; ergodic actions; module categories; MODULE CATEGORIES; ERGODIC ACTIONS; MATRIX PSEUDOGROUPS; ALGEBRAS; REPRESENTATIONS; RECONSTRUCTION; EQUIVALENCE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An ergodic action of a compact quantum group G on an operator algebra A can be interpreted as a quantum homogeneous space for G. Such an action gives rise to the category of finite equivariant Hilbert modules over A, which has a module structure over the tensor category Rep(G) of finite-dimensional representations of G. We show that there is a one-to-one correspondence between the quantum G-homogeneous spaces up to equivariant Morita equivalence, and indecomposable module C*-categories over Rep(G) up to natural equivalence. This gives a global approach to the duality theory for ergodic actions as developed by C. Pinzari and J. Roberts.
引用
收藏
页码:1099 / 1138
页数:40
相关论文
共 38 条