Exact real arithmetic for interval number systems

被引:4
|
作者
Kurka, Petr [1 ,2 ]
机构
[1] Acad Sci Czech Republic, Ctr Theoret Study, CZ-11000 Prague 1, Czech Republic
[2] Charles Univ Prague, CZ-11000 Prague 1, Czech Republic
关键词
Mobius transformation; Exact real arithmetic;
D O I
10.1016/j.tcs.2014.04.030
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An interval number system is given by an initial interval cover of the extended real line and by a finite system of nonnegative Mobius transformations. Each sequence of transformations applied to an initial interval determines a sequence of nested intervals whose intersection contains a unique real number. We adapt in this setting the exact real algorithms which compute arithmetical operations to arbitrary precision. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:32 / 43
页数:12
相关论文
共 50 条
  • [21] CALCULUS FOR INTERVAL FUNCTIONS OF A REAL VARIABLE USING EXTENDED INTERVAL ARITHMETIC
    MARKOV, SM
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1978, 31 (04): : 373 - 376
  • [22] Domains for computation in mathematics, physics and exact real arithmetic
    Edalat, A
    BULLETIN OF SYMBOLIC LOGIC, 1997, 3 (04) : 401 - 452
  • [23] TYPE CLASSES FOR EFFICIENT EXACT REAL ARITHMETIC IN COQ
    Krebbers, Robbert
    Spitters, Bas
    LOGICAL METHODS IN COMPUTER SCIENCE, 2013, 9 (01)
  • [24] Lookahead analysis in exact real arithmetic with logical methods
    Koepp, Nils
    Schwichtenberg, Helmut
    THEORETICAL COMPUTER SCIENCE, 2023, 943 : 171 - 186
  • [25] Coinduction for Exact Real Number Computation
    Ulrich Berger
    Tie Hou
    Theory of Computing Systems, 2008, 43 : 394 - 409
  • [26] Coinduction for Exact Real Number Computation
    Berger, Ulrich
    Hou, Tie
    THEORY OF COMPUTING SYSTEMS, 2008, 43 (3-4) : 394 - 409
  • [27] Applying interval arithmetic to real, integer, and Boolean constraints
    Benhamou, F
    Older, WJ
    JOURNAL OF LOGIC PROGRAMMING, 1997, 32 (01): : 1 - 24
  • [28] ON SOLVING SYSTEMS OF EQUATIONS USING INTERVAL ARITHMETIC
    HANSEN, ER
    MATHEMATICS OF COMPUTATION, 1968, 22 (102) : 374 - &
  • [29] Gradual interval arithmetic and fuzzy interval arithmetic
    Boukezzoula, Reda
    Foulloy, Laurent
    Coquin, Didier
    Galichet, Sylvie
    GRANULAR COMPUTING, 2021, 6 (02) : 451 - 471
  • [30] Gradual interval arithmetic and fuzzy interval arithmetic
    Reda Boukezzoula
    Laurent Foulloy
    Didier Coquin
    Sylvie Galichet
    Granular Computing, 2021, 6 : 451 - 471